2020 ◽  
Vol 26 (1) ◽  
pp. 78-83
Author(s):  
Demet Cidem Dogan ◽  
Huseyin Altindis

With introduction of smart things into our lives, cloud computing is used in many different areas and changes the communication method. However, cloud computing should guarantee the complete security assurance in terms of privacy protection, confidentiality, and integrity. In this paper, a Homomorphic Encryption Scheme based on Elliptic Curve Cryptography (HES-ECC) is proposed for secure data transfer and storage. The scheme stores the data in the cloud after encrypting them. While calculations, such as addition or multiplication, are applied to encrypted data on cloud, these calculations are transmitted to the original data without any decryption process. Thus, the cloud server has only ability of accessing the encrypted data for performing the required computations and for fulfilling requested actions by the user. Hence, storage and transmission security of data are ensured. The proposed public key HES-ECC is designed using modified Weil-pairing for encryption and additional homomorphic property. HES-ECC also uses bilinear pairing for multiplicative homomorphic property. Security of encryption scheme and its homomorphic aspects are based on the hardness of Elliptic Curve Discrete Logarithm Problem (ECDLP), Weil Diffie-Hellman Problem (WDHP), and Bilinear Diffie-Helman Problem (BDHP).


Cryptography ◽  
2020 ◽  
pp. 306-315
Author(s):  
Daya Sagar Gupta ◽  
G. P. Biswas

This paper presents a new homomorphic public-key encryption scheme based on the elliptic curve cryptography (HPKE-ECC). This HPKE-ECC scheme allows public computation on encrypted data stored on a cloud in such a manner that the output of this computation gives a valid encryption of some operations (addition/multiplication) on original data. The cloud system (server) has only access to the encrypted files of an authenticated end-user stored in it and can only do computation on these stored files according to the request of an end-user (client). The implementation of proposed HPKE-ECC protocol uses the properties of elliptic curve operations as well as bilinear pairing property on groups and the implementation is done by Weil and Tate pairing. The security of proposed encryption technique depends on the hardness of ECDLP and BDHP.


2021 ◽  
Vol 10 (11) ◽  
pp. 3439-3447
Author(s):  
T. J. Wong ◽  
L. F. Koo ◽  
F. H. Naning ◽  
A. F. N. Rasedee ◽  
M. M. Magiman ◽  
...  

The public key cryptosystem is fundamental in safeguard communication in cyberspace. This paper described a new cryptosystem analogous to El-Gamal encryption scheme, which utilizing the Lucas sequence and Elliptic Curve. Similar to Elliptic Curve Cryptography (ECC) and Rivest-Shamir-Adleman (RSA), the proposed cryptosystem requires a precise hard mathematical problem as the essential part of security strength. The chosen plaintext attack (CPA) was employed to investigate the security of this cryptosystem. The result shows that the system is vulnerable against the CPA when the sender decrypts a plaintext with modified public key, where the cryptanalyst able to break the security of the proposed cryptosystem by recovering the plaintext even without knowing the secret key from either the sender or receiver.


Sign in / Sign up

Export Citation Format

Share Document