A Novel ElGamal Encryption Scheme of Elliptic Curve Cryptography

Author(s):  
B Ravi Kumar ◽  
◽  
A. Chandra Sekhar ◽  
G.Appala Naidu
2021 ◽  
Vol 10 (11) ◽  
pp. 3439-3447
Author(s):  
T. J. Wong ◽  
L. F. Koo ◽  
F. H. Naning ◽  
A. F. N. Rasedee ◽  
M. M. Magiman ◽  
...  

The public key cryptosystem is fundamental in safeguard communication in cyberspace. This paper described a new cryptosystem analogous to El-Gamal encryption scheme, which utilizing the Lucas sequence and Elliptic Curve. Similar to Elliptic Curve Cryptography (ECC) and Rivest-Shamir-Adleman (RSA), the proposed cryptosystem requires a precise hard mathematical problem as the essential part of security strength. The chosen plaintext attack (CPA) was employed to investigate the security of this cryptosystem. The result shows that the system is vulnerable against the CPA when the sender decrypts a plaintext with modified public key, where the cryptanalyst able to break the security of the proposed cryptosystem by recovering the plaintext even without knowing the secret key from either the sender or receiver.


2021 ◽  
Vol 10 (11) ◽  
pp. 3439-3447
Author(s):  
T. J. Wong ◽  
L. F. Koo ◽  
F. H. Naning ◽  
A. F. N. Rasedee ◽  
M. M. Magiman ◽  
...  

The public key cryptosystem is fundamental in safeguard communication in cyberspace. This paper described a new cryptosystem analogous to El-Gamal encryption scheme, which utilizing the Lucas sequence and Elliptic Curve. Similar to Elliptic Curve Cryptography (ECC) and Rivest-Shamir-Adleman (RSA), the proposed cryptosystem requires a precise hard mathematical problem as the essential part of security strength. The chosen plaintext attack (CPA) was employed to investigate the security of this cryptosystem. The result shows that the system is vulnerable against the CPA when the sender decrypts a plaintext with modified public key, where the cryptanalyst able to break the security of the proposed cryptosystem by recovering the plaintext even without knowing the secret key from either the sender or receiver.


Author(s):  
Manuel Mogollon

For the same level of security that public-key cryptosystems such as RSA have, elliptic curve cryptography (ECC) offers the benefit of smaller key sizes, hence smaller memory and processor requirements. The Diffie-Hellman key exchange, ElGamal encryption, digital signatures, and the Digital Signature Algorithm (DSA) can all be implemented in ECC. This makes ECC a very attractive algorithm for wireless devices such as handhelds and PDAs, which have limited bandwidth and processing power. Running on the same platform, ECC runs more TLS/SSL transactions per second than RSA. This chapter describes the basic concepts and definitions of elliptic curve cryptography.


Sign in / Sign up

Export Citation Format

Share Document