Numerical Simulations and Development of Drafting Strategies for Robotic Swimmers at Low Reynolds Number

Author(s):  
Caroline Bernier ◽  
Mattia Gazzola ◽  
Philippe Chatelain ◽  
Renaud Ronsse
Author(s):  
Scott M. Thompson ◽  
D. Keith Walters ◽  
Basil J. Paudel ◽  
Tausif Jamal

The Tesla valve is a passive-type check valve used for flow control/rectification in a variety of micro/mini-channel systems. Previous studies have focused on its optimal design and effectiveness (i.e. diodicity) for the low-Reynolds number regime (Re < 500). Using three-dimensional (3D) CFD, multiple, identically-shaped Tesla valves arranged in-series, i.e.: a Tesla “tree” or multi-staged Tesla valve (MSTV), were investigated. Fully-developed flow at the inlet and complete-laminar conditions throughout the entire valve structure were imposed on all numerical simulations. The number of Tesla valves, valve-to-valve distance and Reynolds number were varied to determine their effect on MSTV diodicity. The individual Tesla valves within each MSTV possessed pre-optimized design parameters as reported from the literature. Results clearly indicate that the MSTV can provide for a significantly higher diodicity than a single Tesla valve and that this MSTV diodicity increases with Reynolds number. Minimizing the distance between adjacent Tesla valves can significantly increase the MSTV diodicity and, for very low Reynolds number (Re < 50), the MSTV diodicity is near-independent of valve-to-valve distance and number of valves used. In general, more Tesla valves are required to maximize the MSTV diodicity as the Reynolds number increases. The current investigation also demonstrates that 3D numerical simulations more accurately predict the diodicity of a single Tesla valve over a wider range of Reynolds numbers.


2017 ◽  
Vol 817 ◽  
Author(s):  
O. Evstafyeva ◽  
A. S. Morgans ◽  
L. Dalla Longa

The present work considers the low-Reynolds-number wake flow behind a squareback Ahmed body, in close proximity to a ground. At low Reynolds numbers such wakes are known to undergo a series of bifurcations to a state that breaks reflectional symmetry. The symmetry breaking of the wake also persists at turbulent high Reynolds numbers, where it manifests as bi-modal behaviour with random switching between the asymmetric states. Thus far, it has only been possible to study the low-Reynolds-number sequence of bifurcations experimentally and mathematically. The present work presents the first numerical simulations capturing the sequence of symmetry breaking bifurcations that occur. A study of how the wake topology changes throughout suggests that interaction between the closer top/bottom pair of parallel shear layers can only dominate once there is sufficient underbody flow. When this occurs, the two main vortex structures in the wake switch from being horizontally to vertically aligned. A linear feedback control strategy, designed to attenuate base pressure force fluctuations, is then implemented. This causes an accompanying reduction in drag and re-symmetrisation of the wake. Analysis using the dynamic mode decomposition confirms that the wake shedding mode is re-symmetrised. This work motivates future attempts to capture wake symmetry breaking and bi-modality in numerical simulations, and application of a promising feedback control strategy at higher, turbulent Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document