Blockchain-orchestrated machine learning for privacy preserving federated learning in electronic health data

Author(s):  
Jonathan Passerat-Palmbach ◽  
Tyler Farnan ◽  
Mike McCoy ◽  
Justin D. Harris ◽  
Sean T. Manion ◽  
...  
2021 ◽  
Author(s):  
Nawar Shara ◽  
Kelley M. Anderson ◽  
Noor Falah ◽  
Maryam F. Ahmad ◽  
Darya Tavazoei ◽  
...  

BACKGROUND Healthcare data are fragmenting as patients seek care from diverse sources. Consequently, patient care is negatively impacted by disparate health records. Machine learning (ML) offers a disruptive force in its ability to inform and improve patient care and outcomes [6]. However, the differences that exist in each individual’s health records, combined with the lack of health-data standards, in addition to systemic issues that render the data unreliable and that fail to create a single view of each patient, create challenges for ML. While these problems exist throughout healthcare, they are especially prevalent within maternal health, and exacerbate the maternal morbidity and mortality (MMM) crisis in the United States. OBJECTIVE Maternal patient records were extracted from the electronic health records (EHRs) of a large tertiary healthcare system and made into patient-specific, complete datasets through a systematic method so that a machine-learning-based (ML-based) risk-assessment algorithm could effectively identify maternal cardiovascular risk prior to evidence of diagnosis or intervention within the patient’s record. METHODS We outline the effort that was required to define the specifications of the computational systems, the dataset, and access to relevant systems, while ensuring data security, privacy laws, and policies were met. Data acquisition included the concatenation, anonymization, and normalization of health data across multiple EHRs in preparation for its use by a proprietary risk-stratification algorithm designed to establish patient-specific baselines to identify and establish cardiovascular risk based on deviations from the patient’s baselines to inform early interventions. RESULTS Patient records can be made actionable for the goal of effectively employing machine learning (ML), specifically to identify cardiovascular risk in pregnant patients. CONCLUSIONS Upon acquiring data, including the concatenation, anonymization, and normalization of said data across multiple EHRs, the use of a machine-learning-based (ML-based) tool can provide early identification of cardiovascular risk in pregnant patients. CLINICALTRIAL N/A


2019 ◽  
Vol 140 (2) ◽  
pp. 147-157
Author(s):  
A. A. Danielsen ◽  
M. H. J. Fenger ◽  
S. D. Østergaard ◽  
K. L. Nielbo ◽  
O. Mors

2021 ◽  
Vol 3 (2) ◽  
pp. 333-356
Author(s):  
Pavlos Papadopoulos ◽  
Will Abramson ◽  
Adam J. Hall ◽  
Nikolaos Pitropakis ◽  
William J. Buchanan

A common privacy issue in traditional machine learning is that data needs to be disclosed for the training procedures. In situations with highly sensitive data such as healthcare records, accessing this information is challenging and often prohibited. Luckily, privacy-preserving technologies have been developed to overcome this hurdle by distributing the computation of the training and ensuring the data privacy to their owners. The distribution of the computation to multiple participating entities introduces new privacy complications and risks. In this paper, we present a privacy-preserving decentralised workflow that facilitates trusted federated learning among participants. Our proof-of-concept defines a trust framework instantiated using decentralised identity technologies being developed under Hyperledger projects Aries/Indy/Ursa. Only entities in possession of Verifiable Credentials issued from the appropriate authorities are able to establish secure, authenticated communication channels authorised to participate in a federated learning workflow related to mental health data.


2020 ◽  
pp. 31-37
Author(s):  
Mustafa Tanriverdi ◽  

Sharing the electronic health data helps to increase the accuracy of the diagnoses and to improve the quality of health services. This shared data can also be used in medical research and can reduce medical costs. However, health data are fragmented across decentralized hospitals, this prevents data sharing and puts patients’ privacy at risks. In recent years, blockchain has revealed solutions that make life easier in many areas thanks to its distributed, safe and immutable structure. There are many blockchain-based studies in the literature on providing data privacy and sharing in different areas. In some studies, blockchain has been used with technologies such as cloud computing and cryptology. In the field of healthcare blockchain-based solutions are offered for the management and sharing of Electronic health records. In these solutions, private and consortium blockchain types are generally preferred and Public Key Infrastructure (PKI) and encryption are used for data privacy. Within the scope of this study, blockchain-based studies on the privacy preserving data sharing of health data were examined. In this paper, information about the studies in the literature and potential issues that can be studied in the future were discussed. In addition, information about current blockchain technologies such as smart contracts and PKI is also given.


2018 ◽  
Author(s):  
Xuejiao Hu ◽  
Shun Liao ◽  
Hao Bai ◽  
Lijuan Wu ◽  
Minjin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document