A New Approach Combined Fuzzy Clustering and Bayesian Networks for Modeling Gene Regulatory Networks

Author(s):  
Fei Wang ◽  
De Pan ◽  
Jianhua Ding
2012 ◽  
pp. 1-6
Author(s):  
Ai Kung Tan ◽  
Mohd Saberi Mohamad

In this research, Bayesian network is proposed as the model to construct gene regulatory networks from Saccharomyces cerevisiae cell-cycle gene expression dataset and Escherichia coli dataset due to its capability of handling microarray datasets with missing values. The goal of this research is to study and to understand the framework of the Bayesian networks, and then to construct gene regulatory networks from Saccharomyces cerevisiae cell-cycle gene expression dataset and Escherichia coli dataset by developing Bayesian networks using hill-climbing algorithm and Efron’s bootstrap approach and then the performance of the constructed gene networks of Saccharomyces cerevisiae are evaluated and are compared with the previously constructed sub-networks by Dejori [14]. At the end of this research, the gene networks constructed for Saccharomyces cerevisiae not only have achieved high True Positive Rate (more than 90%), but the networks constructed also have discovered more potential interactions between genes. Therefore, it can be concluded that the performance of the gene regulatory networks constructed using Bayesian networks in this research is proved to be better because it can reveal more gene relationships. Dalam penyelidikan ini, Bayesian network adalah dicadangkan sebagai model untuk membina gene regulatory networks dari kitar sel S. cerevisiae set data disebabkan keupayaannya untuk mengendali set data microarray yang mempunyai nilai-nilai yang hilang. Tujuan penyelidikan ini adalah untuk mempelajari dan memahami rekabentuk untuk Bayesian network, dan kemudian untuk membina gene regulatory networks dari data Saccharomyces cerevisiae cell-cycle gene expression dan data Escherichia coli dengan membina model Bayesian networks dengan menggunakan algoritma hill-climbing serta Efron’s bootstrap approach dan gene networks yang dibina untuk Saccharomyces cerevisiae dibandingkan dengan sub-networks yang dibina oleh Dejori [14]. Pada akhir kajian ini, gene networks yang dibina untuk Saccharomyces cerevisiae bukan sahaja telah mencapai True Positive Rate yang tinggi (lebih dari 90%), tetapi gene networks yang dibina juga telah menemui lebih banyak interaksi berpotensi antara gen. Oleh kerana itu, dapat disimpulkan bahawa prestasi gene networks yang dibina menggunakan Bayesian network dalam kajian ini adalah terbukti lebih baik kerana ia boleh mendedahkan lebih banyak hubungan antara gen.


10.29007/fb4f ◽  
2020 ◽  
Author(s):  
Tarek Khaled ◽  
Belaid Benhamou

In biology, Boolean networks are conventionally used to represent and simulate gene regulatory networks. The attractors are the subject of special attention in analyzing the dynamics of a Boolean network. They correspond to stable states and stable cycles, which play a crucial role in biological systems. In this work, we study a new representation of the dynamics of Boolean networks that are based on a new semantics used in answer set programming (ASP). Our work is based on the enu- meration of all the attractors of asynchronous Boolean networks having interaction graphs which are circuits. We show that the used semantics allows to design a new approach for computing exhaustively both the stable cycles and the stable states of such networks. The enumeration of all the attractors and the distinction between both types of attractors is a significant step to better understand some critical aspects of biology. We applied and evaluated the proposed approach on randomly generated Boolean networks and the obtained results highlight the benefits of this approach, and match with some conjectured results in biology.


2014 ◽  
Vol 20 (3) ◽  
pp. 361-383 ◽  
Author(s):  
Sylvain Cussat-Blanc ◽  
Jordan Pollack

All multicellular living beings are created from a single cell. A developmental process, called embryogenesis, takes this first fertilized cell down a complex path of reproduction, migration, and specialization into a complex organism adapted to its environment. In most cases, the first steps of the embryogenesis take place in a protected environment such as in an egg or in utero. Starting from this observation, we propose a new approach to the generation of real robots, strongly inspired by living systems. Our robots are composed of tens of specialized cells, grown from a single cell using a bio-inspired virtual developmental process. Virtual cells, controlled by gene regulatory networks, divide, migrate, and specialize to produce the robot's body plan (morphology), and then the robot is manually built from this plan. Because the robot is as easy to assemble as Lego, the building process could be easily automated.


Sign in / Sign up

Export Citation Format

Share Document