Timetable Optimization Model with Considering Regenerative Braking Power for Urban Rail

Author(s):  
Juanjuan Cai ◽  
Jing Xun ◽  
Xiao Xiao ◽  
Xiaoqing Liu ◽  
Xiangyu Ji
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Renjie Zhang ◽  
Shisong Yin ◽  
Mao Ye ◽  
Zhiqiang Yang ◽  
Shanglu He

Nowadays, an express/local mode has be studied and applied in the operation of urban rail transit, and it has been proved to be beneficial for the long-distance travel. The optimization of train patterns and timetables is vital in the application of the express/local mode. The former one has been widely discussed in the various existing works, while the study on the timetable optimization is limited. In this study, a timetable optimization model is proposed by minimizing the total passenger waiting time at platforms. Further, a genetic algorithm is used to solve the minimization problems in the model. This study uses the data collected from Guangzhou Metro Line 14 and finds that the total passenger waiting time at platforms is reduced by 9.3%. The results indicate that the proposed model can reduce the passenger waiting time and improve passenger service compared with the traditional timetable.


Author(s):  
Xin Yang ◽  
Bin Ning ◽  
Xiang Li ◽  
Tao Tang ◽  
Xiaomei Song

Since the regenerative braking technique can recover considerable electricity from braking trains, it is maturely applied in subway systems. Generally speaking, except a small part of the recovery energy is used by the on-board auxiliary services, most of them is fed back into the overhead contact line. If the feedback energy cannot be absorbed by adjacent accelerating trains timely, it will be consumed by resistances. For maximizing the utilization of recovery energy, this paper proposes a timetable optimization model to coordinate the accelerating and braking processes of up trains and down trains. Firstly, we analyze the coordinating rules. Secondly, we propose an integer programming model to maximize the utilization of recovery energy with headway time and dwell time control. Furthermore, we design a genetic algorithm to solve the optimal timetable. Finally, we conduct numerical examples based on the operation data from Beijing Yizhuang subway line of China. The results illustrate that the proposed model can significantly save energy by 21.58% compared with the current timetable.


2012 ◽  
Vol 516-517 ◽  
pp. 1437-1442
Author(s):  
Qiu Rui Zhang ◽  
Bao Ming Ge ◽  
Da Qiang Bi

At present, the rate of energy utilization is low for the transit regenerative braking on urban rail; most of the energy is consumed by the resistance heating. In this paper, a regenerative braking energy injected-grid device is designed, which makes use of regenerative braking energy and effectively reduce the temperature rise caused by the resistance in the tunnel. The paper describes the composition and the design procedure of regenerative braking energy injected-grid device and presents a control strategy of device. The simulation of the single train model verifies that the stability of DC-bus voltage can be maintained and more power can be feedback to the grid by the proposed device when the train is braking. The feasibility and effectiveness of the proposed control method are validated by the experimental results.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4418
Author(s):  
Shuting Li ◽  
Songrong Wu ◽  
Shiqiang Xiang ◽  
Yabo Zhang ◽  
Josep M. Guerrero ◽  
...  

Generally running with frequent braking over short distances, the urban rail transit train generates great quantities of regenerative braking energy (RBE). The RBE feedback system can effectively recycle RBE and give it back to the AC grid. However, the lack of damp and inertia of generators makes conventional PWM RBE feedback system more sensitive to power fluctuations. To address this issue, a synchronverter-based RBE feedback system of urban rail transit is designed in this paper. First, the structure of the feedback system is presented. Then, the synchronverter-based control strategy with greater flexibility and higher stability is fully discussed. Furthermore, the parameter design of the system is analyzed in detail. Finally, simulation results and experimental results are provided to show the good dynamic performance of the system. Using this synchronverter-based approach, the system supplies traction power to the traction network when the train accelerates and gives the RBE back to the AC grid when the train brakes, in light of the variation of the DC bus voltage. Moreover, the system can be self-synchronized with the AC grid and make corresponding power management on the basis of changes in the voltage amplitude as well as the frequency of the grid. In this sense, the RBE feedback system becomes more flexible, effective and robust.


Sign in / Sign up

Export Citation Format

Share Document