scholarly journals A Timetable Optimization Model for Urban Rail Transit with Express/Local Mode

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Renjie Zhang ◽  
Shisong Yin ◽  
Mao Ye ◽  
Zhiqiang Yang ◽  
Shanglu He

Nowadays, an express/local mode has be studied and applied in the operation of urban rail transit, and it has been proved to be beneficial for the long-distance travel. The optimization of train patterns and timetables is vital in the application of the express/local mode. The former one has been widely discussed in the various existing works, while the study on the timetable optimization is limited. In this study, a timetable optimization model is proposed by minimizing the total passenger waiting time at platforms. Further, a genetic algorithm is used to solve the minimization problems in the model. This study uses the data collected from Guangzhou Metro Line 14 and finds that the total passenger waiting time at platforms is reduced by 9.3%. The results indicate that the proposed model can reduce the passenger waiting time and improve passenger service compared with the traditional timetable.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Rui-Jia Shi ◽  
Bao-Hua Mao ◽  
Yong Ding ◽  
Yun Bai ◽  
Yao Chen

In an urban rail transit system, it is important to coordinate the timetable of a loop line with its connecting lines so as to reduce the waiting time of passengers. This is particularly essential because transfer passengers usually account for the majority of the total passengers in loop lines. In this paper, a timetable optimization model is developed for loop line in order to minimize the average waiting time of access passengers and transfer passengers. This is performed by adjusting the headways and dwell times of trains on the loop line. A genetic algorithm is applied to solve the proposed model, and a numerical example is used to verify its effectiveness. Finally, a case study of a loop line in the Beijing urban rail transit system is conducted. Waiting times of the passengers and the number of waiting passengers are used as performance indicators to verify the optimization results in rush hours and non-rush hours. The results show that the average waiting times for the up-track and down-track are reduced by 3.69% and 2.89% during rush hours and by 11.60% and 11.47% during non-rush hours, respectively.



2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Qin Luo ◽  
Yufei Hou ◽  
Wei Li ◽  
Xiongfei Zhang

The urban rail transit line operating in the express and local train mode can solve the problem of disequilibrium passenger flow and space and meet the rapid arrival demand of long-distance passengers. In this paper, the Logit model is used to analyze the behavior of passengers choosing trains by considering the sensitivity of travel time and travel distance. Then, based on the composition of passenger travel time, an integer programming model for train stop scheme, aimed at minimizing the total passenger travel time, is proposed. Finally, combined with a certain regional rail line in Shenzhen, the plan is solved by genetic algorithm and evaluated through the time benefit, carrying capacity, and energy consumption efficiency. The simulation result shows that although the capacity is reduced by 6 trains, the optimized travel time per person is 10.34 min, and the energy consumption is saved by about 16%, which proves that the proposed model is efficient and feasible.



Author(s):  
Erfan Hassannayebi ◽  
Arman Sajedinejad ◽  
Soheil Mardani

The process of disruption management in rail transit systems faces challenging issues such as the unpredictable occurrence time, the consequences and the uncertain duration of disturbance or recovery time. The objective of this chapter is to adopt a discrete-event object-oriented simulation system, which applies the optimization algorithms in order to compensate the system performance after disruption. A line blockage disruption is investigated. The uncertainty associated with blockage recovery time is considered with several probabilistic scenarios. The disruption management model presented here combines short-turning and station-skipping control strategies with the objective to decrease the average passengers' waiting time. A variable neighborhood search (VNS) algorithm is proposed to minimize the average waiting time. The computational experiments on real instances derived from Tehran Metropolitan Railway are applied in the proposed model and the advantages of the implementing the optimized single and combined short-turning and stop-skipping strategies are listed.



2019 ◽  
Vol 52 (9-10) ◽  
pp. 1461-1479
Author(s):  
Yu Yao ◽  
Xiaoning Zhu ◽  
Hua Shi ◽  
Pan Shang

As an important means of transportation, urban rail transit provides effective mobility, sufficient punctuality, strong security, and environment-friendliness in large cities. However, this transportation mode cannot offer a 24-h service to passengers with the consideration of operation cost and the necessity of maintenance, that is, a final time should be set. Therefore, operators need to design a last train timetable in consideration of the number of successful travel passengers and the total passenger transfer waiting time. This paper proposes a bi-level last train timetable optimization model. Its upper level model aims to maximize the number of passengers who travel by the last train service successful and minimize their transfer waiting time, and its lower level model aims to determine passenger route choice considering the detour routing strategy based on the last train timetable. A genetic algorithm is proposed to solve the upper level model, and the lower level model is solved by a semi-assignment algorithm. The implementation of the proposed model in the Beijing urban rail transit network proves that the model can optimize not only the number of successful transfer directions and successful travel passengers but also the passenger transfer waiting time of successful transfer directions. The optimization results can provide operators detailed information about the stations inaccessible to passengers from all origin stations and uncommon path guides for passengers of all origin–destination pairs. These types of information facilitate the operation of real-world urban rail transit systems.



Author(s):  
Erfan Hassannayebi ◽  
Arman Sajedinejad ◽  
Soheil Mardani

The process of disruption management in rail transit systems faces challenging issues such as the unpredictable occurrence time, the consequences and the uncertain duration of disturbance or recovery time. The objective of this chapter is to adopt a discrete-event object-oriented simulation system, which applies the optimization algorithms in order to compensate the system performance after disruption. A line blockage disruption is investigated. The uncertainty associated with blockage recovery time is considered with several probabilistic scenarios. The disruption management model presented here combines short-turning and station-skipping control strategies with the objective to decrease the average passengers' waiting time. A variable neighborhood search (VNS) algorithm is proposed to minimize the average waiting time. The computational experiments on real instances derived from Tehran Metropolitan Railway are applied in the proposed model and the advantages of the implementing the optimized single and combined short-turning and stop-skipping strategies are listed.





2020 ◽  
Vol 12 (10) ◽  
pp. 4166 ◽  
Author(s):  
Xuan Li ◽  
Toshiyuki Yamamoto ◽  
Tao Yan ◽  
Lili Lu ◽  
Xiaofei Ye

This paper proposes a novel model to optimize the first train timetables for urban rail transit networks, with the goal of maximizing passengers’ transfer waiting time satisfaction. To build up the relationship of transfer waiting time and passenger satisfaction, a reference-based piecewise function is formulated with the consideration of passengers’ expectations, tolerances and dissatisfaction on “just miss”. In order to determine the parameters of zero waiting satisfaction rating, the most comfortable waiting time, and the maximum tolerable waiting time in time satisfaction function, a stated preference survey is conducted in rail transit transfer stations in Shanghai. An artificial bee colony algorithm is developed to solve the timetabling model. Through a real-world case study on Shanghai’s urban rail transit network and comparison with the results of minimizing the total transfer time, we demonstrate that our approach performs better in decreasing extremely long wait and “just miss” events and increasing the number of passengers with a relatively comfortable waiting time in [31s, 5min). Finally, four practical suggestions are proposed for urban rail transit network operations.



2013 ◽  
Vol 361-363 ◽  
pp. 1963-1966
Author(s):  
Wei Zhu

An integrated assignment model for urban rail transit (URT) networks was proposed and discussed in four typical scenarios with the consideration of passenger difference between native and non-native. An overall algorithm framework for the model was also developed, which introduced three critical route choice models and combined them appropriately to different scenarios. A case study was performed on a real-scale network of Shanghai during the Expo 2010. The results revealed that the proposed model can deliver more appropriate solution to the assignment problem compared to the existing practice in the real world.



2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Zhenjun Zhu ◽  
Xiucheng Guo ◽  
Jun Zeng ◽  
Shengrui Zhang

As an important part of urban public transportation systems, the feeder bus fills a service gap left by rail transit, effectively extending the range of rail transit’s service and solving the problem of short-distance travel and interchanges. By defining the potential demand of feeder bus services and considering its relationship with the traffic demands of corresponding staging areas, the distance between road and rail transit, and the repetition factor of road bus lines, this paper established a potential demand model of roads by opening feeder bus services and applying a logit model for passenger flow distribution. Based on a circular route model, a route starting and ending at urban rail transit stations was generated, and a genetic algorithm was then applied to solve it. The Wei-Fang community of Shanghai was selected as the test area. Per the model and algorithm, the feeder route length was conformed to a functional orientation of short-distance travel and the feeder service of a feeder bus; the route mostly covered where conventional bus lines were fewer, which is a finding that is in agreement with the actual situation; the feasibility of the model and algorithm was verified.



Sign in / Sign up

Export Citation Format

Share Document