Reinforcement Learning based Optimization of Bayesian Networks for Generating Feasible Vehicle Configuration Suggestions

Author(s):  
Simon Durr ◽  
Raphael Lamprecht ◽  
Matthias Kauffmann ◽  
Marco F. Huber
Author(s):  
Fatemeh Daneshfar

Load-Frequency Control (LFC) is an essential auxiliary service to keep the electrical system reliability at a suitable level. In addition to the regulating area frequency, the LFC system should control the net interchange power with neighboring areas at scheduled values. Therefore, a desirable LFC performance is achieved by effective adjusting of generation to minimize frequency deviation and regulate tie-line power flows. Nowadays such an LFC design is becoming much more complicated and significant due to the complexity of interconnected power systems. However, most of the LFC designs are based on conventional Proportional-Integral (PI) controllers that are tuned online by trial-and-error approaches. These conventional LFC designs are usually suitable for working at specific operating points and are not more efficient for modern and distributed power systems. These problems apply to design of intelligent LFC schemes that are more adaptive and flexible than conventional ones. The present chapter addresses the frequency regulation using Reinforcement Learning (RL) and Bayesian Networks (BNs) approaches for interconnected power systems. RL and BNs are computational learning based solutions which can adapt with environment conditions. They are a kind of Machine Learning (ML) techniques which have many applications in power system engineering. The main advantages of these intelligent-based solutions for the LFC design can be simplicity and intuitive model building that is closely based on the physical power system topology, easy incorporation of uncertainty, and dependent to the frequency response model and also to the power system parameter values.


Author(s):  
XIAOMIN ZHONG ◽  
EUGENE SANTOS

In this paper, we develop an efficient online approach for belief revision over Bayesian networks by using a reinforcement learning controller to direct a genetic algorithm. The random variables of a Bayesian network can be grouped into several sets reflecting the strong probabilistic correlations between random variables in the group. We build a reinforcement learning controller to identify these groups and recommend the use of "group" mutation and "group" crossover for the genetic algorithm based on these groupings online. The system then evaluates the performance of the genetic algorithm based on these groupings online. The system then evaluates the performance of the genetic algorithm and continues with reinforcement learning to further tune the controller to search for a better grouping.


Decision ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 115-131 ◽  
Author(s):  
Helen Steingroever ◽  
Ruud Wetzels ◽  
Eric-Jan Wagenmakers

Sign in / Sign up

Export Citation Format

Share Document