Adaptive backstepping control of block-strict-feedback systems with unknown parameters

Author(s):  
Chun Yin ◽  
Wei Wang ◽  
Xiuling Wei ◽  
Yuanyuan Li ◽  
Xuegang Huang ◽  
...  
Author(s):  
Yang Zhu ◽  
Miroslav Krstic

This chapter analyzes single-input systems with full relative degree. The primary approach is based on the adaptive backstepping control with Kreisselmeier-filters. In output-feedback adaptive problems, the relative degree plays a major role in determining the difficulty of a problem. The chapter focuses on a special class of LTI systems with its relative degree being equal to its system dimension. Moreover, in this chapter the actuator state is assumed to be measured. The chapter also presents a combination of prediction-based boundary control with adaptive backstepping to address unknown parameters and time delay. It then develops two Lyapunov-based identifiers to estimate unknown plant parameters and actuator time delay.


2007 ◽  
Vol 31 (1) ◽  
pp. 97-110 ◽  
Author(s):  
Jing Zhou ◽  
Changyun Wen ◽  
Chengjin Zhang

Piezo-positioning mechanisms are often used in high-precision positioning applications. Due to their materials, nonlinear hysteretic behavior is commonly observed in such mechanisms and can be described by a LuGre model. In this paper, we develop two robust adaptive backstepping control algorithms for piezo-positioning mechanisms. In the first scheme, we take the structure of the LuGre model into account in the controller design, if the parameters of the model are known. A nonlinear observer is designed to estimate the hysteresis force. In the second scheme, there is no apriori information required from these parameters and thus they can be allowed totally uncertain. In this case, the LuGre model is divided into two parts. While the unknown parameters of one part are incorporated with unknown system parameters for estimation, the effect of the other part is treated as a bounded disturbance. An update law is used to estimate the bound involving this partial hysteresis effect and the external load. For both schemes, it is shown that not only global stability is guaranteed by the proposed controller, but also both transient and asymptotic performances are quantified as explicit functions of the design parameters so that designers can tune the design parameters in an explicit way to obtain the required closed loop behavior.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yan Wang ◽  
Ling Liu ◽  
Chongxin Liu ◽  
Ziwei Zhu ◽  
Zhenquan Sun

In this paper, fractional calculus is applied to establish a novel fractional-order ferroresonance model with fractional-order magnetizing inductance and capacitance. Some basic dynamic behaviors of this fractional-order ferroresonance system are investigated. And then, considering noncommensurate orders of inductance and capacitance and unknown parameters in an actual ferroresonance system, this paper presents a novel fractional-order adaptive backstepping control strategy for a class of noncommensurate fractional-order systems with multiple unknown parameters. The virtual control laws and parameter update laws are designed in each step. Thereafter, a novel fractional-order adaptive controller is designed in terms of the fractional Lyapunov stability theorem. The proposed control strategy requires only one control input and can force the output of the chaotic system to track the reference signal asymptotically. Finally, the proposed method is applied to a noncommensurate fractional-order ferroresonance system with multiple unknown parameters. Numerical simulation confirms the effectiveness of the proposed method. In addition, the proposed control strategy also applies to commensurate fractional-order systems with unknown parameters.


2000 ◽  
Vol 10 (05) ◽  
pp. 1149-1156 ◽  
Author(s):  
S. S. GE ◽  
C. WANG ◽  
T. H. LEE

This paper is concerned with the control of a class of chaotic systems using adaptive backstepping, which is a systematic design approach for constructing both feedback control laws and associated Lyapunov functions. Firstly, we show that many chaotic systems as paradigms in the research of chaos can be transformed into a class of nonlinear systems in the so-called nonautonomous "strict-feedback" form. Secondly, an adaptive backstepping control scheme is extended to the nonautonomous "strict-feedback" system, and it is shown that the output of the nonautonomous system can asymptotically track the output of any known, bounded and smooth nonlinear reference model. Finally, the Duffing oscillator with key constant parameters unknown, is used as an example to illustrate the feasibility of the proposed control scheme. Simulation studies are conducted to show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document