The Hankel Matrix Solution to a System of Quaternion Matrix Equations

Author(s):  
Yun Wang ◽  
Jingpin Huang ◽  
Hao Xiong ◽  
Shanshan Zhang
2013 ◽  
Vol 2013 ◽  
pp. 1-15
Author(s):  
Zhongli Zhou ◽  
Guangxin Huang

The general coupled matrix equations (including the generalized coupled Sylvester matrix equations as special cases) have numerous applications in control and system theory. In this paper, an iterative algorithm is constructed to solve the general coupled matrix equations over reflexive matrix solution. When the general coupled matrix equations are consistent over reflexive matrices, the reflexive solution can be determined automatically by the iterative algorithm within finite iterative steps in the absence of round-off errors. The least Frobenius norm reflexive solution of the general coupled matrix equations can be derived when an appropriate initial matrix is chosen. Furthermore, the unique optimal approximation reflexive solution to a given matrix group in Frobenius norm can be derived by finding the least-norm reflexive solution of the corresponding general coupled matrix equations. A numerical example is given to illustrate the effectiveness of the proposed iterative algorithm.


Author(s):  
Fatemeh Beik ◽  
Salman Ahmadi-Asl

Recently, some research has been devoted to finding the explicit forms of the η-Hermitian and η-anti-Hermitian solutions of several kinds of quaternion matrix equations and their associated least-squares problems in the literature. Although exploiting iterative algorithms is superior than utilizing the explicit forms in application, hitherto, an iterative approach has not been offered for finding η-(anti)-Hermitian solutions of quaternion matrix equations. The current paper deals with applying an efficient iterative manner for determining η-Hermitian and η-anti-Hermitian least-squares solutions corresponding to the quaternion matrix equation AXB + CY D = E. More precisely, first, this paper establishes some properties of the η-Hermitian and η-anti-Hermitian matrices. These properties allow for the demonstration of how the well-known conjugate gradient least- squares (CGLS) method can be developed for solving the mentioned problem over the η-Hermitian and η-anti-Hermitian matrices. In addition, the convergence properties of the proposed algorithm are discussed with details. In the circumstance that the coefficient matrices are ill-conditioned, it is suggested to use a preconditioner for accelerating the convergence behavior of the algorithm. Numerical experiments are reported to reveal the validity of the elaborated results and feasibility of the proposed iterative algorithm and its preconditioned version.


2014 ◽  
Vol 21 (03) ◽  
pp. 449-460 ◽  
Author(s):  
Yubao Bao

In this paper, we give the expression of the least square solution of the linear quaternion matrix equation AXB=C subject to a consistent system of quaternion matrix equations D1X=F1, XE2=F2, and derive the maximal and minimal ranks and the least-norm of the above mentioned solution. The finding of this paper extends some known results in the literature.


2009 ◽  
Vol 37 (6) ◽  
pp. 2060-2079 ◽  
Author(s):  
Qing-Wen Wang ◽  
Shao-Wen Yu ◽  
Qin Zhang

Filomat ◽  
2019 ◽  
Vol 33 (16) ◽  
pp. 5097-5112 ◽  
Author(s):  
Zhuo-Heng He

Let H be the real quaternion algebra and Hmxn denote the set of all m x n matrices over H. For A ? Hm x n, we denote by A? the n x m matrix obtained by applying ? entrywise to the transposed matrix At, where ? is a nonstandard involution of H. A ? Hnxn is said to be ?-Hermitian if A = A?. In this paper, we construct a simultaneous decomposition of four real quaternion matrices with the same row number (A,B,C,D), where A is ?-Hermitian, and B,C,D are general matrices. Using this simultaneous matrix decomposition, we derive necessary and sufficient conditions for the existence of a solution to some real quaternion matrix equations involving ?-Hermicity in terms of ranks of the given real quaternion matrices. We also present the general solutions to these real quaternion matrix equations when they are solvable. Finally some numerical examples are presented to illustrate the results of this paper.


2019 ◽  
Vol 35 ◽  
pp. 266-284 ◽  
Author(s):  
Zhuo-Heng He

In this paper, the pure product singular value decomposition (PSVD) for four quaternion matrices is given. The system of coupled Sylvester-type quaternion matrix equations with five unknowns $X_{i}A_{i}-B_{i}X_{i+1}=C_{i}$ is considered by using the PSVD approach, where $A_{i},B_{i},$ and $C_{i}$ are given quaternion matrices of compatible sizes $(i=1,2,3,4)$. Some necessary and sufficient conditions for the existence of a solution to this system are derived. Moreover, the general solution to this system is presented when it is solvable.


Sign in / Sign up

Export Citation Format

Share Document