Disturbance-observer-based Tracking Control for A Flexible-Joint Robotic Manipulator with External Disturbance

Author(s):  
Wenli Cheng ◽  
Zhongcai Zhang ◽  
Yuqiang Wu
Author(s):  
Heli Gao ◽  
Mou Chen

This paper studies the fixed-time disturbance estimate and tracking control for two-link manipulators subjected to external disturbance. A fixed-time extended-state disturbance observer (FxTESDO) is proposed by improving the extended state observer. Also, a fixed-time inverse dynamics tracking control (FxTIDTC) scheme based on the FxTESDO is given for two-link manipulators. The fixed-time convergence of the FxTESDO and FxTIDTC is proved by the Lyapunov stability theory and with the aid of the bi-limit homogeneous technique. Numerical simulations are employed to illustrate the effectiveness of the proposed FxTIDTC.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Sanxiu Wang

In response to the issue of the trajectory tracking control problem of manipulators with uncertain parameters and external disturbance, an adaptive fuzzy sliding mode robust control algorithm is proposed. Sliding mode control (SMC) is adopted to perform robotic manipulator trajectory tracking control. Then, a fuzzy logic system is used for adaptive adjustment of switching gain of the SMC and to reduce the buffeting problem. Next, compensation is made by using the robust controller in consideration of the impacts of unmodeled dynamics and external disturbance. The simulation experiment on a two axes robotic manipulator shows that, with the proposed control method, the sliding mode control input signal is kept smooth, and the manipulator has high trajectory tracking precision.


2020 ◽  
Vol 53 (5-6) ◽  
pp. 892-898
Author(s):  
Wei Bu ◽  
Ting Li ◽  
Jun Yang ◽  
Yang Yi

We investigate the event-triggered tracking control of networked manipulator in the presence of external disturbance and a variety of system uncertainties. The event-triggered controller is designed by the nonlinear disturbance observer–based control approach, which can dynamically compensate for both errors caused by disturbances and the undesirable effects caused by event-triggering rules. A rigorous Lyapunov stability analysis method is proposed to show that the boundedness of all the signals in the closed-loop system can be guaranteed while in the absence of the input-to-state stability assumption related to measurement errors, tracking error can be constrained to an arbitrarily small set without escaping. Finally, by some simulation results, the feasibility and effectiveness of the proposed control approach is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document