Artificial Neural Network-Aided Energy Management Scheme for Unlocking Demand Response

Author(s):  
Xiangping Chen ◽  
Jinbiao Li ◽  
Anqian Yang ◽  
Qilong Zhang
Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3012 ◽  
Author(s):  
Nikos Kampelis ◽  
Elisavet Tsekeri ◽  
Dionysia Kolokotsa ◽  
Kostas Kalaitzakis ◽  
Daniela Isidori ◽  
...  

Demand Response (DR) is a fundamental aspect of the smart grid concept, as it refers to the necessary open and transparent market framework linking energy costs to the actual grid operations. DR allows consumers to directly or indirectly participate in the markets where energy is being exchanged. One of the main challenges for engaging in DR is associated with the initial assessment of the potential rewards and risks under a given pricing scheme. In this paper, a Genetic Algorithm (GA) optimisation model, using Artificial Neural Network (ΑΝΝ) power predictions for day-ahead energy management at the building and district levels, is proposed. Individual building and building group analysis is conducted to evaluate ANN predictions and GA-generated solutions. ANN-based short term electric power forecasting is exploited in predicting day-ahead demand, and form a baseline scenario. GA optimisation is conducted to provide balanced load shifting and cost-of-energy solutions based on two alternate pricing schemes. Results demonstrate the effectiveness of this approach for assessing DR load shifting options based on a Time of Use pricing scheme. Through the analysis of the results, the practical benefits and limitations of the proposed approach are addressed.


2019 ◽  
Vol 111 ◽  
pp. 05020 ◽  
Author(s):  
Ziwei Xiao ◽  
Jiaqi Yuan ◽  
Wenjie Gang ◽  
Chong Zhang ◽  
Xinhua Xu

The demand of building energy management has increased due to high energy saving potentials. Load monitor and disaggregation can provide useful information for building energy management systems with detailed and individual loads of the building, so corresponding energy efficient measures can be taken to reduce the energy consumption of buildings. The technique is investigated widely in residential buildings known as Non-Intrusive Load Monitoring (NILM). However, relevant studies are not sufficient for non-residential buildings, especially for the cooling loads. This paper proposes a NILM method for cooling load disaggregation using artificial neural network. The cooling load is disaggregated into four categories: building envelope load, occupant load, equipment load and fresh air load. Two approaches are used to realize the load disaggregation: one is based on the Fourier transfer of the cooling loads, the other takes the cooling load, dry-bulb temperature and humidity of outdoor air, and time as inputs. By implementing the methods in a metro station, the performance of the proposed method can be obtained. Results show that both approaches can realize the load disaggregation accurately, with a RMSE less than 11.2. The second approach is recommended with a higher accuracy.


Sign in / Sign up

Export Citation Format

Share Document