Dissipativity-based design of local and wide-area DER controls for large-scale power systems with high penetration of renewables

Author(s):  
Roland Harvey ◽  
Ying Xu ◽  
Zhihua Qu ◽  
Toru Namerikawa
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 97863-97872
Author(s):  
Ning Tong ◽  
Zhihao Jiang ◽  
Lin Zhu ◽  
Yilu Liu

2018 ◽  
Vol 13 (2) ◽  
pp. 342-351
Author(s):  
Herlambang Setiadi ◽  
Nadarajah Mithulananthan ◽  
Rakibuzzaman Shah

2021 ◽  
Author(s):  
Yingyun Sun ◽  
Xiaochong Dong ◽  
Sarmad Majeed Malik

Power systems with high penetration of renewable energy contain various <a></a><a>uncertainties</a>. Scenario-based optimization problems need a large number of discrete scenarios to obtain a reliable approximation for the probabilistic model. It is important to choose typical scenarios and ease the computational burden. This paper presents a scenario reduction network model based on Wasserstein distance. Entropy regularization is used to transform the scenario reduction problem into an unconstrained problem. Through an explicit neural network structure design, the output of the scenario reduction network corresponds to Sinkhorn distance function. The scenario reduction network can generate the typical scenario set through unsupervised learning training. An efficient algorithm is proposed for continuous/discrete scenario reduction. The superiority of the scenario reduction network model is verified through case studies. The numerical results highlight high accuracy and computational efficiency of the proposed model over state-of-the-art model making it an ideal candidate for large-scale scenario reduction problems


2021 ◽  
Author(s):  
Yingyun Sun ◽  
Xiaochong Dong ◽  
Sarmad Majeed Malik

Power systems with high penetration of renewable energy contain various <a></a><a>uncertainties</a>. Scenario-based optimization problems need a large number of discrete scenarios to obtain a reliable approximation for the probabilistic model. It is important to choose typical scenarios and ease the computational burden. This paper presents a scenario reduction network model based on Wasserstein distance. Entropy regularization is used to transform the scenario reduction problem into an unconstrained problem. Through an explicit neural network structure design, the output of the scenario reduction network corresponds to Sinkhorn distance function. The scenario reduction network can generate the typical scenario set through unsupervised learning training. An efficient algorithm is proposed for continuous/discrete scenario reduction. The superiority of the scenario reduction network model is verified through case studies. The numerical results highlight high accuracy and computational efficiency of the proposed model over state-of-the-art model making it an ideal candidate for large-scale scenario reduction problems


2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
A. R. Messina ◽  
P. Esquivel ◽  
F. Lezama

Characterization of spatial and temporal changes in the dynamic patterns of a nonstationary process is a problem of great theoretical and practical importance. On-line monitoring of large-scale power systems by means of time-synchronized Phasor Measurement Units (PMUs) provides the opportunity to analyze and characterize inter-system oscillations. Wide-area measurement sets, however, are often relatively large, and may contain phenomena with differing temporal scales. Extracting from these measurements the relevant dynamics is a difficult problem. As the number of observations of real events continues to increase, statistical techniques are needed to help identify relevant temporal dynamics from noise or random effects in measured data. In this paper, a statistically based, data-driven framework that integrates the use of wavelet-based EOF analysis and a sliding window-based method is proposed to identify and extract, in near-real-time, dynamically independent spatiotemporal patterns from time synchronized data. The method deals with the information in space and time simultaneously, and allows direct tracking and characterization of the nonstationary time-frequency dynamics of oscillatory processes. The efficiency and accuracy of the developed procedures for extracting localized information of power system behavior from time-synchronized phasor measurements of a real event in Mexico is assessed.


Sign in / Sign up

Export Citation Format

Share Document