Adaptive control laws for F-8 flight test

Author(s):  
G. Stein ◽  
G. Hartmann ◽  
R. Hendrick
1977 ◽  
Vol 22 (5) ◽  
pp. 758-767 ◽  
Author(s):  
G. Stein ◽  
G. Hartmann ◽  
R. Hendrick

Author(s):  
Johannes Verberne ◽  
Hever Moncayo

Abstract This paper presents the evaluation of adaptive control augmentation algorithms for wind disturbance rejection in small rotorcraft UAVs. The following control algorithms are developed in an effort to mitigate wind effects: baseline nonlinear dynamic inversion (NLDI), NLDI augmented with adaptive artificial neural networks (ANN), and NLDI augmented with ℒ1 output-feedback adaptive control. A six degrees-of-freedom nonlinear simulation environment is developed to evaluate the performance under different wind disturbance conditions. Monte Carlo analysis and a set of metrics are applied to compare and assess the overall performance of the developed control algorithms within a predefined wind envelope. These metrics provide a performance evaluation for trajectory tracking, angular rates tracking, attitude angle tracking and total energy consumption. The individual metrics are combined to provide the global performance index for the quadrotor with the developed control algorithms. Outdoor flight test results are included in this paper and the capabilities of these controllers to reduce wind disturbance effects on different flight tracking parameters are analyzed. The performance of the developed control laws is evaluated under nominal, low, medium and high wind disturbance conditions.


Author(s):  
Shuvrangshu Jana ◽  
Mayur Shewale ◽  
Susheel Balasubramaniam ◽  
Harikumar Kandath ◽  
M Seetharama Bhat

This article presents the implementation of closed-loop simple adaptive control on fixed-wing micro air vehicle dynamics to improve flight performance characteristics. It is known that to retain the micro air vehicle system performance during the entire flight regime is difficult due to model uncertainties, large parameter variation and wind disturbances compared to flight velocity. An adaptive controller can adapt to the uncertainties but the complexity involved in their implementation is high due to unavailability of required sensor information and computational resources on a micro air vehicle platform. Lack of flight test results in the open literature incorporating adaptive control so far can be partially attributed to this complexity. In this case, adaptive control architecture is implemented in such a way that only the uncertainties in the system dynamics are taken care of by the adaptive control and desired nominal plant performance is achieved by the basic controller. The proposed adaptive controller architecture is implemented in real flight test, and improvement of tracking performance over a proportional–integral–derivative controller is demonstrated which illustrates superior performance to conventional architectures. The proposed design approach can be implemented easily to an existing system, and system performance can be enhanced in the presence of unmodelled and uncertain system dynamics.


2018 ◽  
Vol 90 (1) ◽  
pp. 210-218 ◽  
Author(s):  
Hidenobu Matsuki ◽  
Taishi Nishiyama ◽  
Yuya Omori ◽  
Shinji Suzuki ◽  
Kazuya Masui ◽  
...  

Purpose This paper aims to demonstrate the effectiveness of a fault-tolerant flight control method by using simple adaptive control (SAC) with PID controller. Design/methodology/approach Numerical simulations and flight tests are executed for pitch angle and roll angle control of research aircraft MuPAL-α under the following fault cases: sudden reduction in aileron effectiveness, sudden reduction in elevator effectiveness and loss of longitudinal static stability. Findings The simulations and flight tests reveal the effectiveness of the proposed SAC with PID controller as a fault-tolerant flight controller. Practical implications This research includes implications for the development of vehicles’ robustness. Originality/value This study proposes novel SAC-based flight controller and actually demonstrates the effectiveness by flight test.


Sign in / Sign up

Export Citation Format

Share Document