wind disturbance
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 59)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Vol 35 (2) ◽  
Author(s):  
Zhenxing Gao ◽  
Zhiwei Xiang ◽  
Mingyu Xia ◽  
Haofeng Wang


Author(s):  
Sina Ameli ◽  
Olugbenga Anubi

Abstract This paper solves the problem of regulating the rotor speed tracking error for wind turbines in the full-load region by an effective robust-adaptive control strategy. The developed controller compensates for the uncertainty in the control input effectiveness caused by a pitch actuator fault, unmeasurable wind disturbance, and nonlinearity in the model. Wind turbines have multi-layer structures such that the high-level structure is nonlinearly coupled through an aggregation of the low-level control authorities. Hence, the control design is divided into two stages. First, an ℒ2 controller is designed to attenuate the influence of wind disturbance fluctuations on the rotor speed. Then, in the low-level layer, a controller is designed using a proposed adaptation mechanism to compensate for actuator faults. The theoretical results show that the closed-loop equilibrium point of the regulated rotor speed tracking error dynamics in the high level is finite-gain ℒ2 stable, and the closed-loop error dynamics in the low level is globally asymptotically stable. Simulation results show that the developed controller significantly reduces the root-mean- square of the rotor speed error compared to some well-known works, despite the largely fluctuating wind disturbance, and the time-varying uncertainty in the control input effectiveness.



2022 ◽  
pp. 1-1
Author(s):  
Yue Yang ◽  
Xiaoxiong Liu ◽  
Xuhang Liu ◽  
Yicong Guo ◽  
Weiguo Zhang


IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Joao R. S. Benevides ◽  
Marlon A. D. Paiva ◽  
Paulo V. G. Simplicio ◽  
Roberto S. Inoue ◽  
Marco H. Terra




Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 17
Author(s):  
Peixiao Fan ◽  
Song Ke ◽  
Salah Mohamed Kamel Mohamed Hassan ◽  
Jun Yang ◽  
Yonghui Li ◽  
...  

Frequency and voltage deviation are important standards for measuring energy indicators. It is important for microgrids to maintain the stability of voltage and frequency (VF). Aiming at the VF regulation of microgrid caused by wind disturbance and load fluctuation, a comprehensive VF control strategy for an islanded microgrid with electric vehicles (EVs) based on Deep Deterministic Policy Gradient (DDPG) is proposed in this paper. First of all, the SOC constraints of EVs are added to construct a cluster-EV charging model, by considering the randomness of users’ travel demand and charging behavior. In addition, a four-quadrant two-way charger capacity model is introduced to build a microgrid VF control model including load, micro gas turbine (MT), EVs, and their random power increment constraints. Secondly, according to the two control goals of microgrid frequency and voltage, the structure of DDPG controller is designed. Then, the definition of space, the design of global and local reward functions, and the selection of optimal hyperparameters are completed. Finally, different scenarios are set up in an islanded microgrid with EVs, and the simulation results are compared with traditional PI control and R(λ) control. The simulation results show that the proposed DDPG controller can quickly and efficiently suppress the VF fluctuations caused by wind disturbance and load fluctuations at the same time.



PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257849
Author(s):  
Muhammad Wasim ◽  
Ahsan Ali ◽  
Mohammad Ahmad Choudhry ◽  
Faisal Saleem ◽  
Inam Ul Hasan Shaikh ◽  
...  

An airship is lighter than an air vehicle with enormous potential in applications such as communication, aerial inspection, border surveillance, and precision agriculture. An airship model is made up of dynamic, aerodynamic, aerostatic, and propulsive forces. However, the computation of aerodynamic forces remained a challenge. In addition to aerodynamic model deficiencies, airship mass matrix suffers from parameter variations. Moreover, due to the lighter-than-air nature, it is also susceptible to wind disturbances. These modeling issues are the key challenges in developing an efficient autonomous flight controller for an airship. This article proposes a unified estimation method for airship states, model uncertainties, and wind disturbance estimation using Unscented Kalman Filter (UKF). The proposed method is based on a lumped model uncertainty vector that unifies model uncertainties and wind disturbances in a single vector. The airship model is extended by incorporating six auxiliary state variables into the lumped model uncertainty vector. The performance of the proposed methodology is evaluated using a nonlinear simulation model of a custom-developed UETT airship and is validated by conducting a kind of error analysis. For comparative studies, EKF estimator is also developed. The results show the performance superiority of the proposed estimator over EKF; however, the proposed estimator is a bit expensive on computational grounds. However, as per the requirements of the current application, the proposed estimator can be a preferred choice.



2021 ◽  
Vol 171 ◽  
pp. 106373
Author(s):  
Yongqing Luo ◽  
Xueyong Zhao ◽  
Yuquang Li ◽  
Xinping Liu ◽  
Lilong Wang ◽  
...  


Author(s):  
Humaira Hasnol Hady ◽  
Elya M. N. ◽  
Azrena A. B. ◽  
Siti Noormiza Makhtar


Sign in / Sign up

Export Citation Format

Share Document