Torsional Vibration Suppression with Boundary Impulsive Conditions in Rotary Drilling System

Author(s):  
Samir Toumi ◽  
Rhouma Mlayeh ◽  
Lotfi Beji
Author(s):  
Thomas Stoxreiter ◽  
Gary Portwood ◽  
Laurent Gerbaud ◽  
Olivier Seibel ◽  
Stefan Essl ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3474
Author(s):  
Kosuke Takahashi ◽  
Nyam Jargalsaikhan ◽  
Shriram Rangarajan ◽  
Ashraf Mohamed Hemeida ◽  
Hiroshi Takahashi ◽  
...  

Due to changes in wind, the torque obtained from the wind turbine always fluctuates. Here, the wind turbine and the rotor of the generator are connected by a shaft that is one elastic body, and each rotating body has different inertia. The difference in inertia between the wind turbine and the generator causes a torsion between the wind generator and the generator; metal fatigue and torsion can damage the shaft. Therefore, it is necessary to consider the axial torsional vibration suppression of a geared wind power generator using a permanent magnet synchronous generator (PMSG). In addition, errors in axis system parameters occur due to long-term operation of the generator, and it is important to estimate for accurate control. In this paper, we propose torque estimation using H ∞ observer and axial torsional vibration suppression control in a three inertia system. The H ∞ controller is introduced into the armature current control system (q-axis current control system) of the wind power generator. Even if parameter errors and high-frequency disturbances are included, the shaft torsional torque is estimated by the H ∞ observer that can perform robust estimation. Moreover, by eliminating the resonance point of the shaft system, vibration suppression of the shaft torsional torque is achieved. The results by the proposed method can suppress axial torsional vibration and show the effect better than the results using Proportional-Integral (PI) control.


Author(s):  
Yukio Ishida ◽  
Tsuyoshi Inoue ◽  
Taishi Kagawa ◽  
Motohiko Ueda

Driving torque of rotating machinery, such as automobile engines, changes periodically. As a result, torsional vibrations occur and cause serious noise and vibration problems. In this study, the dynamic characteristics of centrifugal pendulum vibration absorbers restraining torsional vibration is investigated both theoretically and experimentally. In the theoretical analysis, the nonlinear characteristics are taken into consideration under the assumption of large amplitude vibration of pendulum. It is clarified that the centrifugal pendulum, although it has remarkable effects on suppressing harmonic vibration, induces large amplitude harmonic vibrations, the second and third superharmonic resonances, and unstable vibrations of harmonic type. We propose various methods to suppress these secondarily induced vibration and show that it is possible to suppress torsional vibrations to substancially zero amplitude in all through the rotational speed range.


2008 ◽  
Vol 2008 (0) ◽  
pp. _139-1_-_139-6_
Author(s):  
Shingo NISHIDA ◽  
Hiroshi MATSUHISA ◽  
Hideo UTSUNO ◽  
Keisuke YAMADA ◽  
Katsutoshi SAWADA

Author(s):  
Omid Aminfar ◽  
Amir Khajepour

Reducing vibrations in well drilling has a significant effect on improving the overall performance of the drilling process. Vibrations may affect the drilling process in different ways, i.e., reducing durability of the drillstring’s elements, reducing the rate of penetration, and deviating the drilling direction. In rotary drilling, which is used to open mine and oil wells, torsional vibration of the drillstring is an important component of the overall system’s vibration that has received less attention in the literature. In this paper, we propose a finite element model for a sample blasthole drillstring used to open mine wells to investigate its torsional vibrations. Boundary conditions and elements’ specifications are applied to this model. In the model, the interaction between the insert and the rock is represented by a set of repetitive impulses according to the insert pattern. The steady-state response of the system to the repetitive impulses is found and natural frequencies, kinetic energy, and potential energy of the drillstring are calculated. The root mean square (RMS) of the total energy can be used as the measure for reducing the torsional vibration of the system. Finally, an optimum combination of inserts on the cone’s rows was found based on minimizing the total vibratory energy of the drillstring. The optimum design can reduce the torsional vibrations of the drillstring and improve the drilling performance.


Sign in / Sign up

Export Citation Format

Share Document