BP neural network based GPSA used in tandem cold rolling force prediction

Author(s):  
Zhao Xin-qiu ◽  
Wang Yan-sheng
2013 ◽  
Vol 774-776 ◽  
pp. 1042-1045
Author(s):  
Li Chen Wang ◽  
Ji Shun Song ◽  
Jian Zhang ◽  
Pan Li

The process parameters of thin strip tandem cold rolling were optimized based on the BP neural network and the genetic algorithm with which the rolling energy consumption required was reduced and could contribute to the rolling force and the thickness control.


2013 ◽  
Vol 690-693 ◽  
pp. 2361-2365 ◽  
Author(s):  
Wei Teng ◽  
Guang Ming Wang

This paper took the example of rolling force prediction in the cold rolling process to describe the establishment and application of BP neural network prediction system. This system is a prediction model for generic process. Users can select different parameters to train the network structure according to their needs, and can calculate relative rolling force parameters based on the known structure. This system can provide very valuable process information for workers and researchers .


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shun Hu Zhang ◽  
Li Zhi Che ◽  
Xin Ying Liu

The precision of traditional deformation resistance model is limited, which leads to the inaccuracy of the existing rolling force model. In this paper, the back propagation (BP) neural network model was established according to the industrial big data to accurately predict the deformation resistance. Then, a new rolling force model was established by using the BP neural network model. During the establishment of the neural network model, the data set of deformation resistance was established, which was calculated back from the actual rolling force data. Based on the data set after normalization, the BP neural network model of deformation resistance was established through the optimization of algorithm and network structure. It is shown that both the prediction accuracy of the neural network model on the training set and the test set are high, indicating that the generalization ability of the model is strong. The neural network model of the deformation resistance is compared with the theoretical one, and the maximum error is only 3.96%. Furthermore, by comparison with the traditional rolling force model, it is found that the prediction accuracy of the rolling force model imbedding with the present neural network model is improved obviously. The maximum error of the present rolling force model is just 3.86%. The research in this paper provides a new way to improve the prediction accuracy of rolling force model.


Sign in / Sign up

Export Citation Format

Share Document