Towards aging mechanisms of cross-linked polyethylene (XLPE) cable insulation materials in nuclear power plants

Author(s):  
Shuaishuai Liu ◽  
Leonard S. Fifield ◽  
Nicola Bowler
Author(s):  
Leonard S. Fifield ◽  
Robert Duckworth ◽  
Samuel W. Glass

Nuclear power plants contain hundreds of kilometers of electrical cables including cables used for power, for instrumentation, and for control. It is essential that safety-related cable systems continue to perform following a design-basis event. Wholesale replacement of electrical cables in existing plants facing licensing period renewal may be both impractical and cost-prohibitive. It is therefore important to understand the long term aging of cable materials to have confidence that aged cables will perform when needed. It is equally important in support of cable aging management to develop methods to evaluate the health of installed cables and inform selective cable replacement decisions. The most common insulation materials for electrical cables in nuclear power plants are cross-linked polyethylene and ethylene-propylene rubber. The mechanical properties of these materials degrade over time in the presence of environmental stresses including heat, gamma irradiation, and moisture. Mechanical degradation of cable insulation beyond a certain threshold is unacceptable because it can lead to insulation cracking, exposure of energized conductors, arcing and burning or loss of the ability of the cable system to function during a design-basis accident. While thermal-, radiation-, and moisture-related degradation of polymer insulation materials has been extensively studied over the last few decades, questions remain regarding the long term performance of cable materials in nuclear plant-specific environments. Identified knowledge gaps include an understanding of the temperature-dependence of activation energies for thermal damage and an understanding of the synergistic effects of radiation and thermal stress on polymer degradation. Many of the outstanding questions in the aging behavior of cable materials relate to the necessity of predicting long-term field degradation using accelerated aging results from the laboratory. Materials degrade faster under more extreme conditions, but extension of behavior to long term degradation under more mild conditions, such as those experienced by most installed cables in nuclear power plants, is complicated by the fact that different degradation mechanisms may be involved in extreme and mild scenarios. The discrepancy in predicted results from short term, more extreme exposure and actual results from longer term, more mild exposures can be counter intuitive. For instance, due to the attenuation of oxidation penetration in material samples rapidly aged through exposure to high temperatures, the bulk of the samples may be artificially protected from thermal aging. In another example, simultaneous exposure of cable insulation material to heat and radiation may actually lead to less damage at higher temperatures than may be observed at lower temperatures. The Light Water Reactor Sustainability program of the United States (US) Department of Energy (DOE) Office of Nuclear Energy is funding research to increase the predictive understanding of electrical cable material aging and degradation in existing nuclear power plants in support of continued safe operation of plants beyond their initial license periods. This research includes the evaluation and development of methods to assess installed cable condition.


Author(s):  
Robert C. Duckworth ◽  
Emily Frame ◽  
Leonard S. Fifield ◽  
Samuel W. Glass

As part of the Light Water Reactor and Sustainability (LWRS) program in the U.S. Department of Energy (DOE) Office of Nuclear Energy, material aging and degradation research is currently geared to support the long-term operation of existing nuclear power plants (NPPs) as they move beyond their initial 40 year licenses. The goal of this research is to provide information so that NPPs can develop aging management programs (AMPs) to address replacement and monitoring needs as they look to operate for 20 years, and in some cases 40 years, beyond their initial, licensed operating lifetimes. For cable insulation and jacket materials that support instrument, control, and safety systems, accelerated aging data are needed to determine priorities in cable aging management programs. Before accelerated thermal and radiation aging of harvested, representative cable insulation and jacket materials, the benchmark performance of a new test capability at Oak Ridge National Laboratory (ORNL) was evaluated for temperatures between 70 and 135°C, dose rates between 100 and 500 Gy/h, and accumulated doses up to 200 kGy. Samples that were characterized and are representative of current materials in use were harvested from the Callaway NPP near Fulton, Missouri, and the San Onofre NPP north of San Diego, California. From the Callaway NPP, a multiconductor control rod cable manufactured by Boston Insulated Wire (BIW), with a Hypalon/ chlorosulfonated polyethylene (CSPE) jacket and ethylene-propylene rubber (EPR) insulation, was harvested from the auxiliary space during a planned outage in 2013. This cable was placed into service when the plant was started in 1984. From the San Onofre NPP, a Rockbestos Firewall III (FRIII) cable with a Hypalon/ CSPE jacket with cross-linked polyethylene (XLPE) insulation was harvested from an on-site, climate-controlled storage area. This conductor, which was never placed into service, was procured around 2007 in anticipation of future operation that did not occur. Benchmark aging for both jacket and insulation material was carried out in air at a temperature of 125°C or in a uniform 140 Gy/h gamma field over a period of 60 days. Their mechanical properties over the course of their exposures were compared with reference data from comparable cable jacket/insulation compositions and aging conditions. For both accelerated thermal and radiation aging, it was observed that the mechanical properties for the Callaway BIW control rod cable were consistent with those previously measured. However, for the San Onofre Rockbestos FRIII, there was an observable functional difference for accelerated thermal aging at 125°C. Details on possible sources for this difference and plans for resolving each source are given in this paper.


Author(s):  
Yuan-Shang Chang ◽  
Ali Mosleh

Possible degradation of cable insulations exposed to radiation and heat is a safety and operational concern for nuclear power plants, particularly in the context of a license extension for the operation beyond original 40-year design life. Ethylene propylene rubber and silicone rubber are two major materials for the cable insulation. Degradation decreases the elongation at break of the insulation, which may lead to the exposure of the metal core in the cable, causing potential safety issues. This article proposes a mechanistic predictive model for the elongation at break as a function of time, temperature, and radiation dose rate. In the proposed model, the elongation at break curve is divided into an incubation section and a drop-off section with two parameters. In contrast to traditional deterministic approaches, this model projects the expected lifespan of cable insulation in the form of a probability distribution. The article also provides a validation of the model behavior using published experimental data.


Sign in / Sign up

Export Citation Format

Share Document