A stereo matching algorithm based on census transformation and dynamic programming

Author(s):  
Jun Lu ◽  
Xin Zhang ◽  
Donglai Dong ◽  
Ying Fang
2014 ◽  
Vol 981 ◽  
pp. 352-355 ◽  
Author(s):  
Ji Zhou Wei ◽  
Shu Chun Yu ◽  
Wen Fei Dong ◽  
Chao Feng ◽  
Bing Xie

A stereo matching algorithm was proposed based on pyramid algorithm and dynamic programming. High and low resolution images was computed by pyramid algorithm, and then candidate control points were stroke on low-resolution image, and final control points were stroke on the high-resolution images. Finally, final control points were used in directing stereo matching based on dynamic programming. Since the striking of candidate control points on low-resolution image, the time is greatly reduced. Experiments show that the proposed method has a high matching precision.


2021 ◽  
Vol 13 (2) ◽  
pp. 274
Author(s):  
Guobiao Yao ◽  
Alper Yilmaz ◽  
Li Zhang ◽  
Fei Meng ◽  
Haibin Ai ◽  
...  

The available stereo matching algorithms produce large number of false positive matches or only produce a few true-positives across oblique stereo images with large baseline. This undesired result happens due to the complex perspective deformation and radiometric distortion across the images. To address this problem, we propose a novel affine invariant feature matching algorithm with subpixel accuracy based on an end-to-end convolutional neural network (CNN). In our method, we adopt and modify a Hessian affine network, which we refer to as IHesAffNet, to obtain affine invariant Hessian regions using deep learning framework. To improve the correlation between corresponding features, we introduce an empirical weighted loss function (EWLF) based on the negative samples using K nearest neighbors, and then generate deep learning-based descriptors with high discrimination that is realized with our multiple hard network structure (MTHardNets). Following this step, the conjugate features are produced by using the Euclidean distance ratio as the matching metric, and the accuracy of matches are optimized through the deep learning transform based least square matching (DLT-LSM). Finally, experiments on Large baseline oblique stereo images acquired by ground close-range and unmanned aerial vehicle (UAV) verify the effectiveness of the proposed approach, and comprehensive comparisons demonstrate that our matching algorithm outperforms the state-of-art methods in terms of accuracy, distribution and correct ratio. The main contributions of this article are: (i) our proposed MTHardNets can generate high quality descriptors; and (ii) the IHesAffNet can produce substantial affine invariant corresponding features with reliable transform parameters.


1992 ◽  
Vol 13 (7) ◽  
pp. 523-528 ◽  
Author(s):  
E. Stella ◽  
A. Distante ◽  
G. Attolico ◽  
T. D'Orazio

Sign in / Sign up

Export Citation Format

Share Document