Subpattern Complete Two Dimensional Locality Preserving Principal Component Analysis and its application to gait recognition

Author(s):  
Xianye Ben ◽  
Weixiao Meng ◽  
Shi An ◽  
Ze Wang
2011 ◽  
Vol 181-182 ◽  
pp. 902-907
Author(s):  
Xian Ye Ben ◽  
Shi An ◽  
Jian Wang ◽  
Hai Yang Liu

We propose a novel method for data reduction in gait recognition, called Subblock Complete Two Dimensional Principal Component Analysis (SbC2DPCA). GEIs were divided into smaller sub-images and redundant subblocks were adaptively removed. Complete Two Dimensional Principal Component Analysis (C2DPCA) was then applied to every sub-image directly, to acquire a set of projection sub-vectors for both row and column directions and these were synthesized into whole features for subsequent classification using nearest neighbor classifier. We evaluate the proposed gait recognition method on the CASIA gait database. The experimental results and analysis show the recognition accuracy of SbC2DPCA to be superior to C2DPCA, with C2DPCA being a special case of SbC2DPCA. The novelty of the proposed method lies in the adaptive removal of redundant data while extracting local features. This translates to data reduction with very minimal loss of information, as demonstrated by the remarkable recognition accuracy when subjects change clothing or have a backpack.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Tai-Xiang Jiang ◽  
Ting-Zhu Huang ◽  
Xi-Le Zhao ◽  
Tian-Hui Ma

We have proposed a patch-based principal component analysis (PCA) method to deal with face recognition. Many PCA-based methods for face recognition utilize the correlation between pixels, columns, or rows. But the local spatial information is not utilized or not fully utilized in these methods. We believe that patches are more meaningful basic units for face recognition than pixels, columns, or rows, since faces are discerned by patches containing eyes and noses. To calculate the correlation between patches, face images are divided into patches and then these patches are converted to column vectors which would be combined into a new “image matrix.” By replacing the images with the new “image matrix” in the two-dimensional PCA framework, we directly calculate the correlation of the divided patches by computing the total scatter. By optimizing the total scatter of the projected samples, we obtain the projection matrix for feature extraction. Finally, we use the nearest neighbor classifier. Extensive experiments on the ORL and FERET face database are reported to illustrate the performance of the patch-based PCA. Our method promotes the accuracy compared to one-dimensional PCA, two-dimensional PCA, and two-directional two-dimensional PCA.


Sign in / Sign up

Export Citation Format

Share Document