total reflection
Recently Published Documents


TOTAL DOCUMENTS

3323
(FIVE YEARS 407)

H-INDEX

76
(FIVE YEARS 7)

Author(s):  
A. P. Nechiporenko ◽  
O. S. Vezo ◽  
U. Yu. Nechiporenko ◽  
L. V. Plotnikova ◽  
V. E. Sitnikova ◽  
...  

115 samples of honey of various botanical types, geographical origin and harvest year (2019– 2021) were analysed using attenuated total reflection infrared spectroscopy of impaired total reflection, refractometry and biochemical analysis. Initial honey samples in liquid and crystallised states were investigated. Crystalline D-glucopyranose (glucose), D-fructopyranose (fructose), their 40% solutions and invert sugar were used as auxiliary substances. Biochemical analysis was used to determine the glucose content in honey samples. Based on the obtained data, a relationship between the results of biochemical analysis and refractometry (refractive index, the content of invert sugars, humidity) was established. We deduced equations that allow the content of glucose and fructose in honey to be evaluated by the refractive index. Studying honey by IR spectroscopy showed that all investigated samples, regardless of the botanical and geographical origins, can be classified into three groups dominated by: I – glucose, II – fructose and III – mixed, with a close content of two monosaccharides. This allowed the bands characteristic of α- and β-pyranose forms of glucose and fructose to be identified, as well as the nature of their changes depending on the ratio of both monosaccharides in honey as a result of their crystallisation to be assessed. It is noted that the ratio of monosaccharides determines not only the stability of the liquid crystal structure and crystallisation rate in honey but also their optical, biochemical and nutritional properties, which are important for the preferred use of honey in medical and pharmacopoeial practice, dietetics and cosmetology.


Author(s):  
Xinping Zhou ◽  
Yuandeng Shen ◽  
Zehao Tang ◽  
Chengrui zhou ◽  
Yadan Duan ◽  
...  

2022 ◽  
pp. 100209
Author(s):  
D. Vitali Čepo ◽  
M. Karoglan ◽  
L. Borgese ◽  
L.E. Depero ◽  
E. Margui ◽  
...  

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 111
Author(s):  
Magdalena Budnarowska ◽  
Szymon Rafalski ◽  
Jerzy Mizeraczyk

Metamaterials are artificially structured composite media with a unique electromagnetic (EM) response that is absent from naturally occurring materials, which appears counterintuitive and aggravates traditional difficulties in perceiving the behavior of EM waves. The aim of this study was to better understand the interaction of EM waves with metamaterials by virtual visualizing the accompanying physical phenomena. Over the years, virtual visualization of EM wave interactions with metamaterials has proven to be a powerful tool for explaining many phenomena that occur in metamaterials. In this study, we performed virtual visualization of the interaction of an EM plane wave with a split-ring resonator (SRR) metamaterial structure, employing CST Studio software for modeling and comprehensive simulations of high-frequency EM fields of 3D objects. The SRR structure was designed to have its magnetic resonance at the frequency f = 23.69 GHz, which is of interest for antennas supporting wireless microwave point-to-point communication systems (e.g., in satellite systems). Our numerical calculations of the coefficients of absorption, reflection, and transmission of the EM plane wave incident on the SRR structure showed that the SRR structure totally reflected the plane EM wave at the magnetic resonance frequency. Therefore, we focused our research on checking whether the results of numerical calculations could be confirmed by visualizing the total reflection phenomenon on the SRR structure. The performed vector-field visualization resulted in 2D vector maps of the electric and magnetic fields around the SRR structure during the wave period, which demonstrated the existence of characteristic features of the total reflection phenomenon when the EM plane interacted with the studied SRR, i.e., no EM field behind the SRR structure and the standing electric and magnetic waves before the SRR structure, thus, confirming the numerical calculations visually. For deeper understanding the interaction of the EM plane wave with the SRR structure of reflection characteristics at the magnetic resonance frequency f = 23.69 GH, we also visualized the SRR structure response at the frequency f = 21 GHz, i.e., at the so-called detuned frequency. As expected, at the detuned frequency, the SRR structure lost its metamaterial properties and the obtained 2D vector maps of the electric and magnetic fields around the SRR structure during the wave period showed the transmitted EM wave behind the SRR structure and no EM (fully) standing waves before the SRR structure. The visualizations presented in this study are both unique educational presentations to help understand the interaction of EM plane waves with the SRR structure of reflection characteristics at the magnetic resonance and detuned frequencies.


2021 ◽  
pp. 000370282110571
Author(s):  
Dominik Wacht ◽  
Mauro David ◽  
Borislav Hinkov ◽  
Hermann Detz ◽  
Andreas Schwaighofer ◽  
...  

Mid-infrared attenuated total reflection (ATR) spectroscopy is a powerful tool for in situ monitoring of various processes. Mesoporous silica, an extensively studied material, has already been applied in sensing schemes due to its high surface area and tunable surface chemistry. However, its poor chemical stability in aqueous solutions at pH values higher than 8 and strong absorption below 1250 cm−1 limits its range of applications. To circumvent these problems, a mesoporous zirconia coating on ATR crystals was developed. Herein, the synthesis, surface modification, and characterization of ordered mesoporous zirconia films on Si wafers and Si-ATR crystals are presented. The modified coating was applied in sensing schemes using aromatic and aliphatic nitriles in aqueous solution as organic pollutants. The mesoporous zirconia coating shows strong chemical resistance when kept in alkaline solution for 72 h. The success of surface modification is confirmed using Fourier transform infrared (FT-IR) spectroscopy and contact angle measurements. Benzonitrile and valeronitrile in water are used as model analytes to evaluate the enrichment performance of the film. The experimental results are fitted using Freundlich isotherms, and enrichment factors of 162 and 26 are calculated for 10 mg L−1 benzonitrile and 25 mg L−1 valeronitrile in water, respectively. Limits of detection of 1 mg L−1 for benzonitrile and 11 mg L−1 for valeronitrile are obtained. The high chemical stability of this coating allows application in diverse fields such as catalysis with the possibility of in situ monitoring using FT-IR spectroscopy.


2021 ◽  
pp. 000370282110643
Author(s):  
Andrea Teuber ◽  
Robert Stach ◽  
Julian Haas ◽  
Boris Mizaikoff

An innovative mid-infrared spectroscopic sensor system based on quantum cascade lasers has been developed. The system combines the versatility of substrate-integrated hollow waveguides (IHWGs) with the robustness of attenuated total reflection (ATR) crystals employed as internal reflection waveguides for evanescent field sensing. IHWGs are highly reflective metal structures that propagate infrared (IR) radiation and were used as light pipes for coupling radiation into the ATR waveguide. The combined IHWG-ATR device has been designed such that the utmost stability and robustness of the optical alignment were ensured. This novel assembly enables evanescent field absorption measurements at yet unprecedently harsh conditions, that is, high pressure and temperature. Combining these advantages, this innovative sensor assembly is perfectly suited for taking ATR spectroscopy into the field where the robustness of the assembly and optical alignment is essential.


2021 ◽  
pp. 1-17
Author(s):  
Leonardo Bennun ◽  
Haydn Barros ◽  
Yulimar De Araujo ◽  
Cristina Vázquez ◽  
María Natalia Piol ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document