Adaptability analysis of differential protection for UHV half-wavelength AC transmission line

Author(s):  
Xiaowei Ma ◽  
Ming Zhang ◽  
Jiaxiong Gao ◽  
Qingping Wang ◽  
Zhiqian Bo ◽  
...  
2021 ◽  
Vol 257 ◽  
pp. 01016
Author(s):  
Pengfei Shao ◽  
Yu Li ◽  
Ruiming Fang ◽  
Xinghua Guo

Half-wavelength AC transmission line has the characteristics of long transmission distance and high voltage level, and its fault characteristics are significantly different from conventional transmission line. In order to reduce the interference of distributed capacitive current on half-wavelength AC transmission line on the calculation of current differential protection, this paper proposes a new current differential protection scheme based on Bergeron model. In order to solve the problem of small differential current located at the midpoint when a short circuit fault occurs, a solution using different methods to calculate setting value in different areas is proposed. The protection can move quickly near the terminal and delay to act in the middle area. After simulation and verification on the PSCAD experimental platform, it is found that when there is a fault at both terminals of the line, the protection can quickly operate in about 10 ms; when fault occurs in the middle area, the protection can delay its operation. The experimental results show that the various actions and performance of the protection device can meet the requirements of safe operation of half-wavelength transmission line.


2020 ◽  
Vol 13 (3) ◽  
pp. 381-393
Author(s):  
Farhana Fayaz ◽  
Gobind Lal Pahuja

Background:The Static VAR Compensator (SVC) has the capability of improving reliability, operation and control of the transmission system thereby improving the dynamic performance of power system. SVC is a widely used shunt FACTS device, which is an important tool for the reactive power compensation in high voltage AC transmission systems. The transmission lines compensated with the SVC may experience faults and hence need a protection system against the damage caused by these faults as well as provide the uninterrupted supply of power.Methods:The research work reported in the paper is a successful attempt to reduce the time to detect faults on a SVC-compensated transmission line to less than quarter of a cycle. The relay algorithm involves two ANNs, one for detection and the other for classification of faults, including the identification of the faulted phase/phases. RMS (Root Mean Square) values of line voltages and ratios of sequence components of line currents are used as inputs to the ANNs. Extensive training and testing of the two ANNs have been carried out using the data generated by simulating an SVC-compensated transmission line in PSCAD at a signal sampling frequency of 1 kHz. Back-propagation method has been used for the training and testing. Also the criticality analysis of the existing relay and the modified relay has been done using three fault tree importance measures i.e., Fussell-Vesely (FV) Importance, Risk Achievement Worth (RAW) and Risk Reduction Worth (RRW).Results:It is found that the relay detects any type of fault occurring anywhere on the line with 100% accuracy within a short time of 4 ms. It also classifies the type of the fault and indicates the faulted phase or phases, as the case may be, with 100% accuracy within 15 ms, that is well before a circuit breaker can clear the fault. As demonstrated, fault detection and classification by the use of ANNs is reliable and accurate when a large data set is available for training. The results from the criticality analysis show that the criticality ranking varies in both the designs (existing relay and the existing modified relay) and the ranking of the improved measurement system in the modified relay changes from 2 to 4.Conclusion:A relaying algorithm is proposed for the protection of transmission line compensated with Static Var Compensator (SVC) and criticality ranking of different failure modes of a digital relay is carried out. The proposed scheme has significant advantages over more traditional relaying algorithms. It is suitable for high resistance faults and is not affected by the inception angle nor by the location of fault.


Sign in / Sign up

Export Citation Format

Share Document