Calculation and Analysis of Online Short Circuit Current in a Regional Power Grid based on the Actual Operation Data (CICED 2020)

Author(s):  
Chang Zhiqin ◽  
Lu Guangming ◽  
Wang Cong ◽  
Wang Bing ◽  
Lu Jun ◽  
...  
2013 ◽  
Vol 860-863 ◽  
pp. 1857-1861
Author(s):  
Li Wen Wang ◽  
Bi Qiang Tang ◽  
Ling Ling Pan ◽  
Fei Shi ◽  
Jun Liu

Topology adjustment is a main measure to limit short circuit current, but changes of power grid structure might bring deep impact on power system operation. Measures to limit short circuit current are difficult to apply online due to unable to completely evaluate its safety and feasibility. This paper presents an on-line decision support indicator system, which applied to evaluate online short circuit current level of power grid. Based on practical power grid model and typical cross-section, short circuit current level under the current and future maintenance mode is analyzed, decision support to limit short circuit current is given, and the effectiveness and feasibility of limiting measures are evaluated. Analysis results show that the index system is reasonable.


2014 ◽  
Vol 574 ◽  
pp. 324-328
Author(s):  
Nian Fang ◽  
Xian Shan Li ◽  
Hao Xu ◽  
Yu Long Du

The configuration and setting calculation of auxiliary power protection are directly related to the regular and safe operation of the equipments, thereby affecting the security and stability of the power plant. The system features are analyzed in depth according to the operational requirements of auxiliary power system protection in Xiangjiaba hydropower plant ,the system model is built on the basis of the actual project, and a variety of short-circuit current calculations are carried out. At last, the setting of the auxiliary power system relay protection is completed. This thesis also proposes solutions to the emerging problems in the process of protection setting. The results of the setting have been applied to the actual operation and no misoperation or maloperation caused by improper constant setting value has occurred so far in Xiangjiaba hydropower plant.


Author(s):  
Chengzhu Yin ◽  
Miao Wang

The nuclear power site resource is very rich in Jiaodong Peninsula of Shandong Province. It is suitable for construction of the large nuclear power base. The transmission scope and direction of Jiaodong Peninsula nuclear power base is analyzed, and optional transmission plans of Plant 1, Plant 2, Plant 3 and Plant 4 are proposed. The transmission plans are recommended based on technical and economic comparison, which provide good references for construction of the large-scale nuclear power base and power grid development planning. Jiaodong Peninsula nuclear power base is planned to be built in the year of 2016–2030, planning capacity of which is 30500MW. The site of nuclear power base is 100∼400km away from the power load center. The nuclear power will use AC transmission and mainly meet the demand of local power load. The early 15500MW gensets will be accessed to the power grid at 500kV, as the following 15000MW gensets will be accessed at 1000kV UHV (Ultra-high voltage) grid. As the accessing of many large-capacity gensets will produce huge impact to the short-circuit current, sectionalized double-bus configuration is recommended in the 500kV main electrical wiring to reduce the short-circuit current of 500kV bus of nuclear power plant. Double bus section cross wire connection is presented to make sure that every two generators on each bus will be connected to different substations on two transmission lines which are set up on different poles and in different paths, to improve the reliability of the power plant. Through analysis and provement, the construction of large nuclear power base must be based on large and stronge power grid, especially the UHV (Ultra-high voltage) AC grid, to meet the demand of huge nuclear power transmission, and to improve the ability of power exchange and ensure the safety of regional power supply. Also, as the nuclear power plant should better be in base-load operation, the construction of large-scale nuclear power base, would make the system load-control demands increase, which leads to more prominent problems. In order to avoid adding additional depth of peaking power operation and reducing the overall economic operation of power system, power grid should have the necessary means to load-control. Namely the construction of peaking units, such as pumped storage units or gas-fired units at about 5000MW. By analyzing and demonstration, large-scale nuclear power base must rely on large-scale power grid, particularly the support of UHV power grid in order to meet the demond of large-scale power transmission and electricity exchange, and also to ensure regional security of electricity supply.


Sign in / Sign up

Export Citation Format

Share Document