Single-phase active power filter for reactive power and harmonic compensation

Author(s):  
B.L. Cortes ◽  
M.S. Horta ◽  
S.A. Claudio ◽  
G.V.M. Cardenas
Author(s):  
Karunendra Kumar Verma ◽  
V. M. Mishra ◽  
Niraj Kumar

Traditionally, the major part of the electrical power is generally consumed by the non-linear loads due to frequent application of the semiconductor devices in the form of domestic and industrial loads. This results from distortion in the actual supply voltage waveform at the source end due to the interference of the multiple harmonics generated out of semiconductor devices used at load end and excessive absorption of the reactive power. The insufficiency of these compensation techniques leads to the advent of the phase multiplication techniques as well as the most reliable and economic active power filtering scheme. A deep analysis showing tedious waveforms using the ORCAD simulation package for the various kind of loads in conjunction with the single-phase active power filter shunted to the single-phase line at the load end for the two current control techniques (i.e., hysteresis band current control, triangularization of current control) has been done. The results are analyzed and tested to lead the optimistic approach for APF (active power filters).


2016 ◽  
Vol 6 (3) ◽  
pp. 976-981 ◽  
Author(s):  
T. Demirdelen ◽  
R. I. Kayaalp ◽  
M. Tumay

This paper introduces a new control approach for the Multilevel Parallel Hybrid Active Power Filter (M-PHAPF) which can compensate harmonics and variable reactive power demand of loads by controlling the DC link voltage adaptively in medium voltage applications. By the means of this novel control method, M-PHAPF obtains a better and more efficient performance in the compensation of harmonics and reactive power compared to when using conventional control methods. The performance and stability of the proposed method are verified with a simulation model realized in PSCAD/EMTDC with different case studies. The simulation results demonstrate that harmonic compensation performance meets the requirements of the IEEE-519 standard.


Sign in / Sign up

Export Citation Format

Share Document