Performance evaluation of combined cellular genetic algorithms for function optimization problems

Author(s):  
T. Nakashima ◽  
T. Ariyama ◽  
T. Yoshida ◽  
H. Ishibuchi
2012 ◽  
Vol 616-618 ◽  
pp. 2064-2067
Author(s):  
Yong Gang Che ◽  
Chun Yu Xiao ◽  
Chao Hai Kang ◽  
Ying Ying Li ◽  
Li Ying Gong

To solve the primary problems in genetic algorithms, such as slow convergence speed, poor local searching capability and easy prematurity, the immune mechanism is introduced into the genetic algorithm, and thus population diversity is maintained better, and the phenomena of premature convergence and oscillation are reduced. In order to compensate the defects of immune genetic algorithm, the Hénon chaotic map, which is introduced on the above basis, makes the generated initial population uniformly distributed in the solution space, eventually, the defect of data redundancy is reduced and the quality of evolution is improved. The proposed chaotic immune genetic algorithm is used to optimize the complex functions, and there is an analysis compared with the genetic algorithm and the immune genetic algorithm, the feasibility and effectiveness of the proposed algorithm are proved from the perspective of simulation experiments.


1995 ◽  
Vol 29 (4) ◽  
pp. 39-56 ◽  
Author(s):  
S. Hurley ◽  
L. Moutinho ◽  
N.M. Stephens

2021 ◽  
pp. 1-15
Author(s):  
Jinding Gao

In order to solve some function optimization problems, Population Dynamics Optimization Algorithm under Microbial Control in Contaminated Environment (PDO-MCCE) is proposed by adopting a population dynamics model with microbial treatment in a polluted environment. In this algorithm, individuals are automatically divided into normal populations and mutant populations. The number of individuals in each category is automatically calculated and adjusted according to the population dynamics model, it solves the problem of artificially determining the number of individuals. There are 7 operators in the algorithm, they realize the information exchange between individuals the information exchange within and between populations, the information diffusion of strong individuals and the transmission of environmental information are realized to individuals, the number of individuals are increased or decreased to ensure that the algorithm has global convergence. The periodic increase of the number of individuals in the mutant population can greatly increase the probability of the search jumping out of the local optimal solution trap. In the iterative calculation, the algorithm only deals with 3/500∼1/10 of the number of individual features at a time, the time complexity is reduced greatly. In order to assess the scalability, efficiency and robustness of the proposed algorithm, the experiments have been carried out on realistic, synthetic and random benchmarks with different dimensions. The test case shows that the PDO-MCCE algorithm has better performance and is suitable for solving some optimization problems with higher dimensions.


2013 ◽  
Vol 310 ◽  
pp. 609-613
Author(s):  
Ioana D. Balea ◽  
Radu Hulea ◽  
Georgios E. Stavroulakis

This paper presents an implementation of Eurocode load cases for discrete global optimization algorithm for planar structures based on the principles of finite element methods and genetic algorithms. The final optimal design is obtained using IPE sections chosen as feasible by the algorithm, from the available steel sections from industry. The algorithm is tested on an asymmetric planar steel frame with promising results.


2013 ◽  
Vol 427-429 ◽  
pp. 1934-1938
Author(s):  
Zhong Rong Zhang ◽  
Jin Peng Liu ◽  
Ke De Fei ◽  
Zhao Shan Niu

The aim is to improve the convergence of the algorithm, and increase the population diversity. Adaptively particles of groups fallen into local optimum is adjusted in order to realize global optimal. by judging groups spatial location of concentration and fitness variance. At the same time, the global factors are adjusted dynamically with the action of the current particle fitness. Four typical function optimization problems are drawn into simulation experiment. The results show that the improved particle swarm optimization algorithm is convergent, robust and accurate.


Sign in / Sign up

Export Citation Format

Share Document