continuous domains
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 32)

H-INDEX

15
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3036
Author(s):  
Mihael Baketarić ◽  
Marjan Mernik ◽  
Tomaž Kosar

Context: In this study, we report on a Systematic Mapping Study (SMS) for attraction basins in the domain of metaheuristics. Objective: To identify research trends, potential issues, and proposed solutions on attraction basins in the field of metaheuristics. Research goals were inspired by the previous paper, published in 2021, where attraction basins were used to measure exploration and exploitation. Method: We conducted the SMS in the following steps: Defining research questions, conducting the search in the ISI Web of Science and Scopus databases, full-text screening, iterative forward and backward snowballing (with ongoing full-text screening), classifying, and data extraction. Results: Attraction basins within discrete domains are understood far better than those within continuous domains. Attraction basins on dynamic problems have hardly been investigated. Multi-objective problems are investigated poorly in both domains, although slightly more often within a continuous domain. There is a lack of parallel and scalable algorithms to compute attraction basins and a general framework that would unite all different definitions/implementations used for attraction basins. Conclusions: Findings regarding attraction basins in the field of metaheuristics reveal that the concept alone is poorly exploited, as well as identify open issues where researchers may improve their research.


2021 ◽  
Author(s):  
Alberto Maria Metelli ◽  
Guglielmo Manneschi ◽  
Marcello Restelli

AbstractWe study the problem of identifying the policy space available to an agent in a learning process, having access to a set of demonstrations generated by the agent playing the optimal policy in the considered space. We introduce an approach based on frequentist statistical testing to identify the set of policy parameters that the agent can control, within a larger parametric policy space. After presenting two identification rules (combinatorial and simplified), applicable under different assumptions on the policy space, we provide a probabilistic analysis of the simplified one in the case of linear policies belonging to the exponential family. To improve the performance of our identification rules, we make use of the recently introduced framework of the Configurable Markov Decision Processes, exploiting the opportunity of configuring the environment to induce the agent to reveal which parameters it can control. Finally, we provide an empirical evaluation, on both discrete and continuous domains, to prove the effectiveness of our identification rules.


2021 ◽  
Author(s):  
Anton Dignös ◽  
Michael H. Böhlen ◽  
Johann Gamper ◽  
Christian S. Jensen ◽  
Peter Moser

AbstractJoins are essential and potentially expensive operations in database management systems. When data is associated with time periods, joins commonly include predicates that require pairs of argument tuples to overlap in order to qualify for the result. Our goal is to enable built-in systems support for such joins. In particular, we present an approach where overlap joins are formulated as unions of range joins, which are more general purpose joins compared to overlap joins, i.e., are useful in their own right, and are supported well by B+-trees. The approach is sufficiently flexible that it also supports joins with additional equality predicates, as well as open, closed, and half-open time periods over discrete and continuous domains, thus offering both generality and simplicity, which is important in a system setting. We provide both a stand-alone solution that performs on par with the state-of-the-art and a DBMS embedded solution that is able to exploit standard indexing and clearly outperforms existing DBMS solutions that depend on specialized indexing techniques. We offer both analytical and empirical evaluations of the proposals. The empirical study includes comparisons with pertinent existing proposals and offers detailed insight into the performance characteristics of the proposals.


2021 ◽  
pp. 43-72
Author(s):  
Jing Liu ◽  
Sreenatha Anavatti ◽  
Matthew Garratt ◽  
Hussein A. Abbass

2021 ◽  
Vol 179 (3) ◽  
pp. 295-319
Author(s):  
Longchun Wang ◽  
Lankun Guo ◽  
Qingguo Li

Formal Concept Analysis (FCA) has been proven to be an effective method of restructuring complete lattices and various algebraic domains. In this paper, the notion of contractive mappings over formal contexts is proposed, which can be viewed as a generalization of interior operators on sets into the framework of FCA. Then, by considering subset-selections consistent with contractive mappings, the notions of attribute continuous formal contexts and continuous concepts are introduced. It is shown that the set of continuous concepts of an attribute continuous formal context forms a continuous domain, and every continuous domain can be restructured in this way. Moreover, the notion of F-morphisms is identified to produce a category equivalent to that of continuous domains with Scott continuous functions. The paper also investigates the representations of various subclasses of continuous domains including algebraic domains and stably continuous semilattices.


Author(s):  
Folker Hoffmann ◽  
Alexander Charlish ◽  
Matthew Ritchie ◽  
Hugh Griffiths

Sign in / Sign up

Export Citation Format

Share Document