A modified DOA estimation algorithm for coherent signals based on single acoustic vector hydrophone

Author(s):  
Zhiyong Yuan ◽  
Xiaodong Gu ◽  
Keqiang Hu
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2191
Author(s):  
Huichao Yan ◽  
Ting Chen ◽  
Peng Wang ◽  
Linmei Zhang ◽  
Rong Cheng ◽  
...  

Direction of arrival (DOA) estimation has always been a hot topic for researchers. The complex and changeable environment makes it very challenging to estimate the DOA in a small snapshot and strong noise environment. The direction-of-arrival estimation method based on compressed sensing (CS) is a new method proposed in recent years. It has received widespread attention because it can realize the direction-of-arrival estimation under small snapshots. However, this method will cause serious distortion in a strong noise environment. To solve this problem, this paper proposes a DOA estimation algorithm based on the principle of CS and density-based spatial clustering (DBSCAN). First of all, in order to make the estimation accuracy higher, this paper selects a signal reconstruction strategy based on the basis pursuit de-noising (BPDN). In response to the challenge of the selection of regularization parameters in this strategy, the power spectrum entropy is proposed to characterize the noise intensity of the signal, so as to provide reasonable suggestions for the selection of regularization parameters; Then, this paper finds out that the DOA estimation based on the principle of CS will get a denser estimation near the real angle under the condition of small snapshots through analysis, so it is proposed to use a DBSCAN method to process the above data to obtain the final DOA estimate; Finally, calculate the cluster center value of each cluster, the number of clusters is the number of signal sources, and the cluster center value is the final DOA estimate. The proposed method is applied to the simulation experiment and the micro electro mechanical system (MEMS) vector hydrophone lake test experiment, and they are proved that the proposed method can obtain good results of DOA estimation under the conditions of small snapshots and low signal-to-noise ratio (SNR).


2014 ◽  
Vol 998-999 ◽  
pp. 779-783
Author(s):  
Zheng Luo ◽  
Fei Yu ◽  
Lin Wu ◽  
Yuan Liu

A novel two-dimensional (2D) direction-of-arrival (DOA) estimation algorithm utilizing a sparse signal representation of higher-order power of covariance matrix is proposed. Through applying the higher-order power of covariance matrix to construct a new sparse decomposition vector, this algorithm avoids the estimation of incident signal number and eigenvalue decomposition. And the hierarchical granularity-dictionary is studied, which forms the over-complete dictionary adaptively in the light of source signals’ distribution. Compared with MUSIC and L1-SVD, this algorithm not only provides a better 2D DOA performance but also possesses the capability of coherent signals estimation. Theoretical analysis and simulation results demonstrate the validity and robust of the proposed algorithm.


2014 ◽  
Vol 59 (1) ◽  
pp. 93-110 ◽  
Author(s):  
Liangtian Wan ◽  
Guangjie Han ◽  
Joel J. P. C. Rodrigues ◽  
Weijian Si ◽  
Naixing Feng

2011 ◽  
Vol 291-294 ◽  
pp. 3250-3254 ◽  
Author(s):  
Ke Zhang ◽  
Peng Ma ◽  
Jian Yun Zhang

For DOA estimation of coherent signals in switch antenna array (SAA), a new fast algorithm is proposed. Instead of conventional sub-space algorithm’s covariance matrix, a Toeplitz matrix is constructed with a single cycle of sampled data. It is proved theoretically that the ranks of the Toeplitz matrix is equal to the number of signal sources and has no relations with the coherency of the signal source. Through eigenvalue decomposition, signal and noise subspace are obtained respectively, then DOA estimation can be done by one-dimensional spectral peak searching according to the MUSIC algorithm. The theoretical analysis and simulation results demonstrate validity and superiority of the novel algorithm.


2012 ◽  
Vol 239-240 ◽  
pp. 92-95
Author(s):  
Guang Jin He ◽  
Jin Fang Cheng ◽  
Wei Zhang

In the traditional vector data expressions, the outputs of a single 3D vector hydrophone are reorganized into a complex vector, which cannot retain the orthogonality of the velocity elements. In this paper, biquaternion formalism is used to model the vector hydrophone’s output and a novel MUSIC-like algorithm is proposed to estimate the DOA (Direction-Of-Arrival) of the sources. The three velocity channels outputs are placed in the imaginary parts of the biquaternion numbers, which retains the orthogonality of the particle velocities and is robust to correlated/coherent noises. What’s more, the biquaternion data model has a compact way of handing multi-component data, which results a much less memory requirements compared with the traditional approach.


2010 ◽  
Vol 32 (3) ◽  
pp. 604-608 ◽  
Author(s):  
Xin Xie ◽  
Guo-lin Li ◽  
Hua-wen Liu

Sign in / Sign up

Export Citation Format

Share Document