hydrophone array
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 49)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 304
Author(s):  
Qisong Wu ◽  
Youhai Xu

Large-aperture towed linear hydrophone array has been widely used for beamforming-based signal enhancement in passive sonar systems; however, its performance can drastically decrease due to the array distortion caused by rapid tactical maneuvers of the towed platform, oceanic currents, hydrodynamic effects, etc. In this paper, an enhanced data-driven shape array estimation scheme is provided in the passive underwater acoustic data, and a novel nonlinear outlier-robust particle filter (ORPF) method is proposed to acquire enhanced estimates of time delays in the presence of distorted hydrophone array. A conventional beamforming technique based on a hypothetical array is first used, and the detection of the narrow-band components is sequentially carried out so that the corresponding amplitudes and phases at these narrow-band components can be acquired. We convert the towed array estimation problem into a nonlinear discrete-time filtering problem with the joint estimates of amplitudes and time-delay differences, and then propose the ORPF method to acquire enhanced estimates of the time delays by exploiting the underlying properties of slowly changing time-delay differences across sensors. The proposed scheme fully exploits directional radiated noise targets as sources of opportunity for online array shape estimation, and thus it requires neither the number nor direction of sources to be known in advance. Both simulations and real experimental data show the effectiveness of the proposed method.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8104
Author(s):  
Tommaso Lapucci ◽  
Luigi Troiano ◽  
Carlo Carobbi ◽  
Lorenzo Capineri

Usually, towed hydrophone arrays are instrumented with a set of compasses. Data from these sensors are utilized while beamforming the acoustic signal for target bearing estimation. However, elements of the hydrophone array mounted in the neighborhood of a compass can affect the Earth’s magnetic field detection. The effects depend upon the materials and magnetic environment present in the vicinity of the platform hosting the compass. If the disturbances are constant in time, they can be compensated for by means of a magnetic calibration procedure. This process is commonly known as soft and hard iron compensation. In this paper, a solution is presented for carrying out the magnetic calibration of a COTS (Commercial Off the Shelf) digital compass without sensor motion. This approach is particularly suited in applications where a physical rotation of the platform that hosts the sensor is unfeasible. In our case, the platform consists in an assembled and operational towed hydrophone array. A standard calibration process relies on physical rotation of the platform and thus on the use of the geomagnetic field as a reference during the compensation. As a variation on this approach, we generate an artificial reference magnetic field to simulate the impractical physical rotation. We obtain this by using a tri-axial Helmholtz coil, which enables programmability of the reference magnetic field and assures the required field uniformity. In our work, the simulated geomagnetic field is characterized in terms of its uncertainty. The analysis indicates that our method and experimental set-up represent a suitably accurate approach for the soft and hard iron compensation of the compasses equipped in the hydrophone array under test.


2021 ◽  
Vol 182 ◽  
pp. 108228
Author(s):  
Weidong Wang ◽  
Weijie Tan ◽  
Hui Li ◽  
Qunfei Zhang ◽  
Wentao Shi

Acoustics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 611-629
Author(s):  
Mojgan Mirzaei Hotkani ◽  
Jean-Francois Bousquet ◽  
Seyed Alireza Seyedin ◽  
Bruce Martin ◽  
Ehsan Malekshahi

In this research, a new application using broadband ship noise as a source-of-opportunity to estimate the scattering field from the underwater targets is reported. For this purpose, a field trial was conducted in collaboration with JASCO Applied Sciences at Duncan’s Cove, Canada in September 2020. A hydrophone array was deployed in the outbound shipping lane at a depth of approximately 71 m to collect broadband noise data from different ship types and effectively localize the underwater targets. In this experiment, a target was installed at a distance (93 m) from the hydrophone array at a depth of 25 m. In this study, a matched field processing (MFP) algorithm is utilized for localization. Different propagation models are presented using Green’s function to generate the replica signal; this includes normal modes in a shallow water waveguide, the Lloyd-mirror pattern for deep water, as well as the image model. We use the MFP algorithm with different types of underwater environment models and a proposed estimator to find the best match between the received signal and the replica signal. Finally, by applying the scatter function on the proposed multi-channel cross correlation coefficient time-frequency localization algorithm, the location of target is detected.


2021 ◽  
Vol 150 (4) ◽  
pp. A123-A123
Author(s):  
David E. Hannay ◽  
Art Cole ◽  
Jack Hennessey
Keyword(s):  

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257054
Author(s):  
Marie J. Zahn ◽  
Kristin L. Laidre ◽  
Peter Stilz ◽  
Marianne H. Rasmussen ◽  
Jens C. Koblitz

Echolocation signals of wild beluga whales (Delphinapterus leucas) were recorded in 2013 using a vertical, linear 16-hydrophone array at two locations in the pack ice of Baffin Bay, West Greenland. Individual whales were localized for 4:42 minutes of 1:04 hours of recordings. Clicks centered on the recording equipment (i.e. on-axis clicks) were isolated to calculate sonar parameters. We report the first sonar beam estimate of in situ recordings of wild belugas with an average -3 dB asymmetrical vertical beam width of 5.4°, showing a wider ventral beam. This narrow beam width is consistent with estimates from captive belugas; however, our results indicate that beluga sonar beams may not be symmetrical and may differ in wild and captive contexts. The mean apparent source level for on-axis clicks was 212 dB pp re 1 μPa and whales were shown to vertically scan the array from 120 meters distance. Our findings support the hypothesis that highly directional sonar beams and high source levels are an evolutionary adaptation for Arctic odontocetes to reduce unwanted surface echoes from sea ice (i.e., acoustic clutter) and effectively navigate through leads in the pack ice (e.g., find breathing holes). These results provide the first baseline beluga sonar metrics from free-ranging animals using a hydrophone array and are important for acoustic programs throughout the Arctic, particularly for acoustic classification between belugas and narwhals (Monodon monoceros).


Author(s):  
Tommaso Lapucci ◽  
Luigi Troiano ◽  
Carlo Carobbi ◽  
Lorenzo Capineri

Usually, towed hydrophone arrays are instrumented with a set of compasses. Data from these sensors are utilized while beamforming the acoustic signal for target bearing estimation. However, elements of the hydrophone array mounted in the neighborhood of a compass can affect the Earth’s magnetic field detection. The effects depend upon the kind of elements present in the platform hosting the compass. If the disturbances are constant in time, they can be compensated for by means of a magnetic calibration. This process is commonly known as soft and hard iron compensation. In this paper, a solution is presented to carry out the magnetic calibration of a COTS (Commercial Off The Shelf) digital compass without unattainable sensor motion. This approach is particularly suited in applications where a physical rotation of the platform that hosts the sensor is unfeasible. In our case, the platform consists in an assembled and operational towed hydrophone array. A standard calibration process relies on physical rotation of the platform and thus on the use of the geomagnetic field as a reference during the compensation. As a variation on this approach, we provide to the sensor an artificial reference magnetic field to simulate the unfeasible physical rotation. We obtain this by using a tri-axial Helmholtz coil, which enables programmability of the reference magnetic field and assures the required field uniformity. In our work, the simulated geomagnetic field is characterized in terms of its uncertainty. The analysis indicates that our method and experimental set-up represent a suitably accurate approach for the soft and hard iron compensation of the compasses equipped in the hydrophone array under test.


2021 ◽  
Vol 178 ◽  
pp. 107945
Author(s):  
Yu Hao ◽  
Nan Zou ◽  
Longhao Qiu ◽  
Chenmu Li ◽  
Yan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document