Enhanced-accuracy phase-equalizer using conic-plus-nonlinear optimizations

Author(s):  
Tian-Bo Deng
Keyword(s):  
2021 ◽  
Author(s):  
Vincent Savaux ◽  
Patrick Savelli

This paper deals with multipath channel estimation and equalization in LoRa. It is suggested to take advantage of the cyclic property of the symbols in the LoRa frame preamble to obtain an interference-free version of the symbols in the frequency domain. Then, estimation methods used in multicarrier systems can be applied, such as the least square (LS), and the minimum mean square error (MMSE) estimators. It is shown that the cyclic property in LoRa is inherently independent of the length of the channel, making these estimation techniques robust to any frequency-selective channel. In addition the frequency domain zero-forcing (ZF) equalizer is used, and an original phase equalizer is introduced, taking advantage of the constant modulus property of LoRa symbols in the frequency domain. The performance of the investigated estimators and equalizers is shown through simulations, and applications to the presented results are further discussed.


Sign in / Sign up

Export Citation Format

Share Document