channel estimation and equalization
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 28)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Vincent Savaux ◽  
Patrick Savelli

This paper deals with multipath channel estimation and equalization in LoRa. It is suggested to take advantage of the cyclic property of the symbols in the LoRa frame preamble to obtain an interference-free version of the symbols in the frequency domain. Then, estimation methods used in multicarrier systems can be applied, such as the least square (LS), and the minimum mean square error (MMSE) estimators. It is shown that the cyclic property in LoRa is inherently independent of the length of the channel, making these estimation techniques robust to any frequency-selective channel. In addition the frequency domain zero-forcing (ZF) equalizer is used, and an original phase equalizer is introduced, taking advantage of the constant modulus property of LoRa symbols in the frequency domain. The performance of the investigated estimators and equalizers is shown through simulations, and applications to the presented results are further discussed.


2021 ◽  
Author(s):  
Vincent Savaux ◽  
Patrick Savelli

This paper deals with multipath channel estimation and equalization in LoRa. It is suggested to take advantage of the cyclic property of the symbols in the LoRa frame preamble to obtain an interference-free version of the symbols in the frequency domain. Then, estimation methods used in multicarrier systems can be applied, such as the least square (LS), and the minimum mean square error (MMSE) estimators. It is shown that the cyclic property in LoRa is inherently independent of the length of the channel, making these estimation techniques robust to any frequency-selective channel. In addition the frequency domain zero-forcing (ZF) equalizer is used, and an original phase equalizer is introduced, taking advantage of the constant modulus property of LoRa symbols in the frequency domain. The performance of the investigated estimators and equalizers is shown through simulations, and applications to the presented results are further discussed.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 968
Author(s):  
Eduardo Salazar ◽  
Cesar A. Azurdia-Meza ◽  
David Zabala-Blanco ◽  
Sandy Bolufé ◽  
Ismael Soto

Wireless vehicular communications are a promising technology. Most applications related to vehicular communications aim to improve road safety and have special requirements concerning latency and reliability. The traditional channel estimation techniques used in the IEEE 802.11 standard do not properly perform over vehicular channels. This is because vehicular communications are subject to non-stationary, time-varying, frequency-selective wireless channels. Therefore, the main goal of this work is the introduction of a new channel estimation and equalization technique based on a Semi-supervised Extreme Learning Machine (SS-ELM) in order to address the harsh characteristics of the vehicular channel and improve the performance of the communication link. The performance of the proposed technique is compared with traditional estimators, as well as state-of-the-art machine-learning-based algorithms over an urban scenario setup in terms of bit error rate. The proposed SS-ELM scheme outperformed the extreme learning machine and the fully complex extreme learning machine algorithms for the evaluated scenarios. Compared to traditional techniques, the proposed SS-ELM scheme has a very similar performance. It is also observed that, although the SS-ELM scheme requires the largest operation time among the evaluated techniques, its execution time is still far away from the latency requirements specified by the standard for safety applications.


Sign in / Sign up

Export Citation Format

Share Document