A DWT-Based Blind Robust High Capacity and Secure Digital Watermarking and Information Hiding Scheme for Image Authentication, Tampering Localization and Automatic Self-Recovery

Author(s):  
Swapnil S. Chaughule ◽  
D. B. Megherbi
2021 ◽  
Vol 1802 (3) ◽  
pp. 032027
Author(s):  
Zhenjie Bao ◽  
Yadong Jin ◽  
Yue Liu ◽  
Jingyun Hu

2020 ◽  
Vol 6 (3) ◽  
pp. 92-99
Author(s):  
A. Zhuvikin

One of the most promising application of the digital watermarking is the selective image authentication (SIA) systems. In order to implement such a system one requires an embedding algorithm with an appropriate capacity. In addition, an embedding method is to be robust for the class of non-malicious manipulations which the SIA system is designed for. We propose the new method which has a significant embedding capacity while still being tolerant to JPEG compression, brightness and contrast adjustments. This was possible due to the extension of the well-known discrete wavelet transform embedding technique. We propose two-step embedding scheme and the use of image histogram equalisation and recovering operations. The experiment results show acceptable tolerance to JPEG compression, brightness and contrast adjustments with good visual quality in terms of PSNR just after embedding.


The growth rate of the Internet is exceeding that of any previous technology. As the Internet has become the major medium for transferring sensitive information, the security of the transferred message has now become the utmost priority. To ensure the security of the transmitted data, Image steganography has emerged out as an eminent tool of information hiding. The frequency of availability of image file is high and provides high capacity. In this paper, a method of secure data hiding in image is proposed that uses knight tour positions and further 8-queen positions in 8*8 pixel blocks.The cover image is divided into 8*8 pixel blocks and pixels are selected from each block corresponding to the positions of Knight in 8*8 chessboard starting from different pixel positions. 8-pixel values are selected from alternate knight position. Selected pixels values converted to 8-bit ASCII code and result in 8* 8 bit matrix. 8-Queen’s solution on 8*8 chessboard is applied on 8*8 bit matrix. The bits selected from 8-Queens positions and compared with 8-bit ASCII code of message characters. The proposed algorithm changes the LSB of only some of the pixels based on the above comparison. Based on parameters like PSNR and MSE the efficiency of the method is checked after implementation. Then the comparison done with some already proposed techniques. This is how, image steganography showed interesting and promising results when compared with other techniques.


Author(s):  
Masaaki Fujiyoshi ◽  
Hitoshi Kiya

This chapter addresses a new class of Reversible Information Hiding (RIH) and its application to verifying the integrity of images. The method of RIH distorts an image once to hide information in the image itself, and it not only extracts embedded information but also recovers the original image from the distorted image. The well-known class of RIH is based on the expansion of prediction error in which a location map, which indicates the pixel block positions of a certain block category, is required to recover the original image. In contrast, the method described in this chapter is free from having to memorize any parameters including location maps. This feature suits the applications of image authentication in which the integrity of extracted information guarantees that of a suspected image. If image-dependent parameters such as location maps are required, the suspected image should first be identified from all possible images. The method described in this chapter reduces such costly processes.


Sign in / Sign up

Export Citation Format

Share Document