A Novel Rotor-side Converter Topology of Doubly-fed Wind Turbine Based on H-Bridge

Author(s):  
Chao Meng ◽  
Rende Zhao ◽  
Cheng Yuan ◽  
Congcong Xuan
2014 ◽  
Vol 707 ◽  
pp. 329-332
Author(s):  
Li Ling Sun ◽  
Dan Fang

As the number of doubly fed induction generator (DFIG)- based wind-turbine systems continues to increase, wind turbines are required to provide Low Voltage Ride-Through (LVRT) capability, especially under the condition of grid voltage dips. This paper, depending on the operating characteristics of doubly-fed induction generator during grid faults ,deals with a protection and control strategy on rotor-side converter (RSC) to enhance the low voltage ride through capability of a wind turbine driven doubly fed induction generator (DFIG). The simulation and experiment studies demonstrate the correctness of the developed model and the effectiveness of the control strategy for DFIG-based wind-turbine systems under such adverse grid conditions.


2020 ◽  
Vol 2 (1) ◽  
pp. 17-29
Author(s):  
Hamza Mesai Ahmed ◽  
Youcef Djeriri

This paper presents the active and reactive powers control of a doubly fed induction generator (DFIG) connected to the grid utility and driven by a wind turbine, this machine allowing a large speed variation and so a large range of wind is achieved. Traditionally vector control is introduced to the DFIG control strategies, which decouples DFIG active and reactive powers, and reaches good performances in the wind energy conversion systems (WECS). However, this decoupling is lost if the parameters of the DFIG change. In this direction, a robust control scheme based on the nonlinear input-output linearizing and decoupling control strategy for the rotor side converter (RSC) of the WECS is presented. Simulation results show that the proposed control strategy provides a robust decoupled control and perfect tracking of the generated active and reactive powers of the wind turbine driven DFIG with a low THD rate of the generated currents.


2017 ◽  
Vol 10 (1) ◽  
pp. 56 ◽  
Author(s):  
Zakaria Sabiri ◽  
Nadia Machkour ◽  
Nabila Rabbah ◽  
Mohammed Nahid ◽  
Elm'kaddem Kheddioui

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2287
Author(s):  
Kaina Qin ◽  
Shanshan Wang ◽  
Zhongjian Kang

With the rapid increase in the proportion of the installed wind power capacity in the total grid capacity, the state has put forward higher and higher requirements for wind power integration into the grid, among which the most difficult requirement is the zero-voltage ride through (ZVRT) capability of the wind turbine. When the voltage drops deeply, a series of transient processes, such as serious overvoltage, overcurrent, or speed rise, will occur in the motor, which will seriously endanger the safe operation of the wind turbine itself and its control system, and cause large-scale off-grid accident of wind generator. Therefore, it is of great significance to improve the uninterrupted operation ability of the wind turbine. Doubly fed induction generator (DFIG) can achieve the best wind energy tracking control in a wide range of wind speed and has the advantage of flexible power regulation. It is widely used at present, but it is sensitive to the grid voltage. In the current study, the DFIG is taken as the research object. The transient process of the DFIG during a fault is analyzed in detail. The mechanism of the rotor overcurrent and DC bus overvoltage of the DFIG during fault is studied. Additionally, the simulation model is built in DIgSILENT. The active crowbar hardware protection circuit is put into the rotor side of the wind turbine, and the extended state observer and terminal sliding mode control are added to the grid side converter control. Through the cooperative control technology, the rotor overcurrent and DC bus overvoltage can be suppressed to realize the zero-voltage ride-through of the doubly fed wind turbine, and ensure the safe and stable operation of the wind farm. Finally, the simulation results are presented to verify the theoretical analysis and the proposed control strategy.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4461
Author(s):  
Ahsanullah Memon ◽  
Mohd Wazir Mustafa ◽  
Muhammad Naveed Aman ◽  
Mukhtar Ullah ◽  
Tariq Kamal ◽  
...  

Brushless doubly-fed induction generators have higher reliability, making them an attractive choice for not only offshore applications but also for remote locations. These machines are composed of two back-to-back voltage source converters: the grid side converter and the rotor side converter. The rotor side converter is typically used for reactive current control of the power winding using the control winding current. A low voltage ride through (LVRT) fault is detected using a hysterisis comparison of the power winding voltage. This approach leads to two problems, firstly, the use of only voltage to detect faults results in erroneous or slow response, and secondly, sub-optimal control of voltage drop because of static reference values for reactive current compensation. This paper solves these problems by using an analytical model of the voltage drop caused by a short circuit. Moreover, using a fuzzy logic controller, the proposed technique employs the voltage frequency in addition to the power winding voltage magnitude to detect LVRT conditions. The analytical model helps in reducing the power winding voltage drop while the fuzzy logic controller leads to better and faster detection of faults, leading to an overall faster response of the system. Simulations in Matlab/Simulink show that the proposed technique can reduce the voltage drop by up to 0.12 p.u. and result in significantly lower transients in the power winding voltage as compared to existing techniques.


Sign in / Sign up

Export Citation Format

Share Document