Overvoltage measurement method based on non-contact wireless measurement

Author(s):  
Wenzhe Zheng ◽  
Jian He ◽  
Lin Zhao
2012 ◽  
Vol 263-266 ◽  
pp. 392-397
Author(s):  
Jie Luo ◽  
Yun Hui Wang ◽  
Qian Wen Zhao ◽  
Hui Guo ◽  
Fei She

Based on hydraulic sensors and wireless transmission, a new wireless measurement method of liquid volume in a tank is introduced. This measurement system includes hydraulic pressure sensors, A/D converter, GPRS (General Packet Radio Service) module and upper monitor in a computer, from which the users can get aware of the liquid volume in a tank at any time. The measurement system has been built,calibrated and tested. The experimental results show that this measurement system works well and the measurement error is less than 1%.


2014 ◽  
Vol 1049-1050 ◽  
pp. 691-694
Author(s):  
Jian Li Zhao ◽  
Quan Xin Bai ◽  
Peng Zhang

The capacitive device is a important equipment in the power system. Its working state is usually monitored by charged detection. However, the traditional detection method needs a lot of cable wiring for each test, which makes a big security hidden danger. In order to solve the problem, a new wireless measurement method based on 2.4G wireless and Bluetooth technology is proposed in this paper, which not only achieves wireless synchronous measurement of current and voltage, but also meets the requirements of capacitive equipment charged detection.


2020 ◽  
pp. 35-42
Author(s):  
Yuri P. Zarichnyak ◽  
Vyacheslav P. Khodunkov

The analysis of a new class of measuring instrument for heat quantities based on the use of multi-valued measures of heat conductivity of solids. For example, measuring thermal conductivity of solids shown the fallacy of the proposed approach and the illegality of the use of the principle of ambiguity to intensive thermal quantities. As a proof of the error of the approach, the relations for the thermal conductivities of the component elements of a heat pump that implements a multi-valued measure of thermal conductivity are given, and the limiting cases are considered. In two ways, it is established that the thermal conductivity of the specified measure does not depend on the value of the supplied heat flow. It is shown that the declared accuracy of the thermal conductivity measurement method does not correspond to the actual achievable accuracy values and the standard for the unit of surface heat flux density GET 172-2016. The estimation of the currently achievable accuracy of measuring the thermal conductivity of solids is given. The directions of further research and possible solutions to the problem are given.


2015 ◽  
Vol 135 (11) ◽  
pp. 1349-1350
Author(s):  
Kazuhiro Suzuki ◽  
Noboru Nakasako ◽  
Masato Nakayama ◽  
Toshihiro Shinohara ◽  
Tetsuji Uebo

2017 ◽  
Vol 137 (11) ◽  
pp. 654-660
Author(s):  
Kunihiro Senda ◽  
Shinji Koseki ◽  
Yoshiaki Zaizen ◽  
Takeshi Omura ◽  
Yoshiaki Oda

Sign in / Sign up

Export Citation Format

Share Document