Coherent Fiber Optic Sensors for Impact Feature Assessment in Glass Fiber Reinforced Plastic (GFRP)

Author(s):  
Ilaria Di Luch ◽  
Maddalena Ferrario ◽  
Marco Brunera ◽  
Pierpaolo Boffi ◽  
Alessio Beligni ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6607
Author(s):  
Paweł Popielski ◽  
Bartosz Bednarz ◽  
Rafał Sieńko ◽  
Tomasz Howiacki ◽  
Łukasz Bednarski ◽  
...  

Diagnostics and assessment of the structural performance of collectors and tunnels require multi-criteria as well as comprehensive analyses for improving the safety based on acquired measurement data. This paper presents the basic goals for a structural health monitoring system designed based on distributed fiber optic sensors (DFOS). The issue of selecting appropriate sensors enabling correct strain transfer is discussed hereafter, indicating both limitations of layered cables and advantages of sensors with monolithic cross-section design in terms of reliable measurements. The sensor’s design determines the operation of the entire monitoring system and the usefulness of the acquired data for the engineering interpretation. The measurements and results obtained due to monolithic DFOS sensors are described hereafter on the example of real engineering structure—the Burakowski concrete collector in Warsaw during its strengthening with glass-fiber reinforced plastic (GRP) panels.


1995 ◽  
Vol 117 (1) ◽  
pp. 133-138 ◽  
Author(s):  
G. Caprino ◽  
V. Tagliaferri ◽  
L. Covelli

A previously proposed micromechanical formula, aiming to predict the vaporization energy Qv of composite materials as a function of fiber and matrix properties and fiber volume ratio, was assessed. The experimental data, obtained on glass fiber reinforced plastic panels with different fiber contents cut by a medium power CO2 cw laser, were treated according to a procedure previously suggested, in order to evaluate Qv. An excellent agreement was found between experimental and theoretical Qv values. Theory was then used to predict the response to laser cutting of a composite material with a fiber content varying along the thickness. The theoretical predictions indicated that, in this case, the interpretation of the experimental results may be misleading, bringing to errors in the evaluation of the material thermal properties, or in the prediction of the kerf depth. Some experimental data were obtained, confirming the theoretical findings.


AIMS Energy ◽  
2018 ◽  
Vol 6 (6) ◽  
pp. 1032-1049 ◽  
Author(s):  
Yusuke Yasuda ◽  
◽  
Hayato Iwasaki ◽  
Kentaro Yasui ◽  
Ayako Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document