A Labor-Efficient GAN-based Model Generation Scheme for Deep-Learning Defect Inspection among Dense Beans in Coffee Industry

Author(s):  
Cheng-Ju Kuo ◽  
Chao-Chun Chen ◽  
Tzu-Ting Chen ◽  
ZhiJing Tsai ◽  
Min-Hsiung Hung ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4292
Author(s):  
Horng-Horng Lin ◽  
Harshad Kumar Dandage ◽  
Keh-Moh Lin ◽  
You-Teh Lin ◽  
Yeou-Jiunn Chen

Solar cells may possess defects during the manufacturing process in photovoltaic (PV) industries. To precisely evaluate the effectiveness of solar PV modules, manufacturing defects are required to be identified. Conventional defect inspection in industries mainly depends on manual defect inspection by highly skilled inspectors, which may still give inconsistent, subjective identification results. In order to automatize the visual defect inspection process, an automatic cell segmentation technique and a convolutional neural network (CNN)-based defect detection system with pseudo-colorization of defects is designed in this paper. High-resolution Electroluminescence (EL) images of single-crystalline silicon (sc-Si) solar PV modules are used in our study for the detection of defects and their quality inspection. Firstly, an automatic cell segmentation methodology is developed to extract cells from an EL image. Secondly, defect detection can be actualized by CNN-based defect detector and can be visualized with pseudo-colors. We used contour tracing to accurately localize the panel region and a probabilistic Hough transform to identify gridlines and busbars on the extracted panel region for cell segmentation. A cell-based defect identification system was developed using state-of-the-art deep learning in CNNs. The detected defects are imposed with pseudo-colors for enhancing defect visualization using K-means clustering. Our automatic cell segmentation methodology can segment cells from an EL image in about 2.71 s. The average segmentation errors along the x-direction and y-direction are only 1.6 pixels and 1.4 pixels, respectively. The defect detection approach on segmented cells achieves 99.8% accuracy. Along with defect detection, the defect regions on a cell are furnished with pseudo-colors to enhance the visualization.


2020 ◽  
Vol 55 ◽  
pp. 317-324 ◽  
Author(s):  
Jong Pil Yun ◽  
Woosang Crino Shin ◽  
Gyogwon Koo ◽  
Min Su Kim ◽  
Chungki Lee ◽  
...  

2018 ◽  
Vol 35 (4) ◽  
pp. 691-693 ◽  
Author(s):  
Sheng Wang ◽  
Shiyang Fei ◽  
Zongan Wang ◽  
Yu Li ◽  
Jinbo Xu ◽  
...  

Abstract Motivation PredMP is the first web service, to our knowledge, that aims at de novo prediction of the membrane protein (MP) 3D structure followed by the embedding of the MP into the lipid bilayer for visualization. Our approach is based on a high-throughput Deep Transfer Learning (DTL) method that first predicts MP contacts by learning from non-MPs and then predicts the 3D model of the MP using the predicted contacts as distance restraints. This algorithm is derived from our previous Deep Learning (DL) method originally developed for soluble protein contact prediction, which has been officially ranked No. 1 in CASP12. The DTL framework in our approach overcomes the challenge that there are only a limited number of solved MP structures for training the deep learning model. There are three modules in the PredMP server: (i) The DTL framework followed by the contact-assisted folding protocol has already been implemented in RaptorX-Contact, which serves as the key module for 3D model generation; (ii) The 1D annotation module, implemented in RaptorX-Property, is used to predict the secondary structure and disordered regions; and (iii) the visualization module to display the predicted MPs embedded in the lipid bilayer guided by the predicted transmembrane topology. Results Tested on 510 non-redundant MPs, our server predicts correct folds for ∼290 MPs, which significantly outperforms existing methods. Tested on a blind and live benchmark CAMEO from September 2016 to January 2018, PredMP can successfully model all 10 MPs belonging to the hard category. Availability and implementation PredMP is freely accessed on the web at http://www.predmp.com. Supplementary information Supplementary data are available at Bioinformatics online.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 62734-62749 ◽  
Author(s):  
Kyi Thar ◽  
Thant Zin Oo ◽  
Yan Kyaw Tun ◽  
Do Hyeon Kim ◽  
Ki Tae Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document