Precise position control of a PMSM based on new adaptive PID controllers

Author(s):  
Raymundo C. Garcia ◽  
Walter I. Suemitsu ◽  
J. O. P Pinto
Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 745
Author(s):  
Marco Carpio ◽  
Roque Saltaren ◽  
Julio Viola ◽  
Cristian Calderon ◽  
Juan Guerra

The design of robot systems controlled by cables can be relatively difficult when it is approached from the mathematical model of the mechanism, considering that its approach involves non-linearities associated with different components, such as cables and pulleys. In this work, a simple and practical decoupled control structure proposal that requires practically no mathematical analysis was developed for the position control of a planar cable-driven parallel robot (CDPR). This structure was implemented using non-linear fuzzy PID and classic PID controllers, allowing performance comparisons to be established. For the development of this research, first the structure of the control system was proposed, based on an analysis of the cables involved in the movement of the end-effector (EE) of the robot when they act independently for each axis. Then a tuning of rules was carried out for fuzzy PID controllers, and Ziegler–Nichols tuning was applied to classic PID controllers. Finally, simulations were performed in MATLAB with the Simulink and Simscape tools. The results obtained allowed us to observe the effectiveness of the proposed structure, with noticeably better performance obtained from the fuzzy PID controllers.


2018 ◽  
pp. 32-1-32-12
Author(s):  
Jian-Xin Xu ◽  
Sanjib Kumar Panda

Author(s):  
Yiwei Tang ◽  
Xin Sun ◽  
Qi He ◽  
Xi Xiao ◽  
Weihua Wang

2018 ◽  
Vol 7 (4) ◽  
pp. 369-370 ◽  
Author(s):  
Kenshi Matsuo ◽  
Takeshi Miura ◽  
Katsubumi Tajima

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xinjun Sheng ◽  
Zhao Ma ◽  
Ningbin Zhang ◽  
Wei Dong

Abstract This paper presents the development of a six degrees-of-freedom manipulator with soft end-effector and an inverse kinematic compensator for aerial contact manipulation. Realizing the fact that aerial manipulators can hardly achieve precise position control, a compliant manipulator with soft end-effector is first developed to moderate end-effector positioning errors. The manipulator is designed to be rigid-soft combined. The rigid robotic arm employs the lightweight but high-strength materials. The compliance requirement is achieved by the soft end-effector so that the mechanical design for the joints are largely simplified. These two features are beneficial to lighten the arm and to ensure the accuracy. In the meantime, the pneumatic soft end-effector can further moderate the probable insufficient accuracy by endowing the manipulator with compliance for impact resistance and robustness to positioning errors. With the well-designed manipulator, an inverse kinematic compensator is then proposed to eliminate lumped disturbances from the aerial platform. The compensator can ensure the stabilization of the end-effector by using state estimation from the aerial platform, which is robust and portable as the movement of the platform can be reliably obtained. Both the accuracy and compliance have been well demonstrated after being integrated into a hexarotor platform, and a representative scenario aerial task repairing the wind turbine blade-coating was completed successfully, showing the potential to accomplish complex aerial manipulation tasks.


Sign in / Sign up

Export Citation Format

Share Document