impact resistance
Recently Published Documents


TOTAL DOCUMENTS

2252
(FIVE YEARS 785)

H-INDEX

50
(FIVE YEARS 13)

2022 ◽  
Vol 50 ◽  
pp. 102544
Author(s):  
Junli Liu ◽  
Shuai Li ◽  
Kate Fox ◽  
Phuong Tran
Keyword(s):  

Author(s):  
Pooja Rani

Abstract: The wearing of metal parts might be defined as a gradual decay or breakdown of the metal. When a part becomes so deformed that it cannot perform adequately, it must be replaced or rebuilt. While the end results of wear are similar, the causes of wear are different. It is essential to understand the wear factors involved before making a hard surfacing product selection. It would be easy to select a surfacing alloy if all metal components were subjected to only one type of wear. However, a metal part is usually worn by combinations of two or more types of wear. This makes an alloy selection considerably more complicated. A hard surfacing alloy should be chosen as a compromise between each wear factor. The initial focus should centre on the primary wear factor and then the secondary wear factor(s) should be examined. For example: upon examining a worn metal part, it is determined that the primary wear factor is abrasion and the secondary wear factor is light impact. The surfacing alloy chosen should have very good abrasion resistance but also have a fair amount of impact resistance. Keywords: Welding, Hard Facing Electrodes, Alloys, Afrox 300.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 454
Author(s):  
Raad A. Al-Ameri ◽  
Sallal Rashid Abid ◽  
Gunasekaran Murali ◽  
Sajjad H. Ali ◽  
Mustafa Özakça ◽  
...  

Despite the fact that the mechanical properties of Engineered Cementitious Composites (ECC) after high-temperature exposure are well investigated in the literature, the repeated impact response of ECC is not yet explored. Aiming to evaluate the residual impact response of ECC subjected to sub-high temperatures under repeated drop weight blows, the ACI 544-2R repeated impact test was utilized in this study. Disk impact specimens (150 mm diameter and 64 mm thickness) were prepared from the M45 ECC mixture but using polypropylene fibers, while similar 100 mm cube specimens and 100 × 100 × 400 mm prism specimens were used to evaluate the compressive and flexural strengths. The specimens were all cast, cured, heated, cooled, and tested under the same conditions and at the same age. The specimens were subjected to three temperatures of 100, 200 and 300 °C, while a group of specimens was tested without heating as a reference group. The test results showed that heating to 100 and 200 °C did not affect the impact resistance noticeably, where the retained cracking and failure impact numbers and ductility were higher or slightly lower than those of unheated specimens. On the other hand, exposure to 300 °C led to a serious deterioration in the impact resistance and ductility. The retained failure impact numbers after exposure to 100, 200, and 300 °C were 313, 257, and 45, respectively, while that of the reference specimens was 259. The results also revealed that the impact resistance at this range of temperature showed a degree of dependency on the compressive strength behavior with temperature.


2022 ◽  
Vol 12 ◽  
Author(s):  
Anja Müller ◽  
Keisuke Sakurai ◽  
Diana Seinige ◽  
Kunihiko Nishino ◽  
Corinna Kehrenberg

The prototype fexA gene confers combined resistance to chloramphenicol and florfenicol. However, fexA variants mediating resistance only to chloramphenicol have been identified, such as in the case of a Staphylococcus aureus isolate recovered from poultry meat illegally imported to Germany. The effects of the individual mutations detected in the fexA sequence of this isolate were investigated in this study. A total of 11 fexA variants, including prototype fexA and variants containing the different previously described mutations either alone or in different combinations, were generated by on-chip gene synthesis and site-directed mutagenesis. The constructs were inserted into a shuttle vector and transformed into three recipient strains (Escherichia coli, Staphylococcus aureus, and Salmonella Typhimurium). Subsequently, minimal inhibitory concentrations (MIC) of florfenicol and chloramphenicol were determined. In addition, protein modeling was used to predict the structural effects of the mutations. The lack of florfenicol-resistance mediating properties of the fexA variants could be attributed to the presence of a C110T and/or G98C mutation. Transformants carrying fexA variants containing either of these mutations, or both, showed a reduction of florfenicol MICs compared to those transformants carrying prototype fexA or any of the other variants. The significance of these mutations was supported by the generated protein models, indicating a substitution toward more voluminous amino-acids in the substrate-binding site of FexA. The remaining mutations, A391G and C961A, did not result in lower florfenicol-resistance compared to prototype fexA.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mateus Garcia Rodolfo ◽  
Lidiane Cristina Costa ◽  
Juliano Marini

Abstract Poly(lactic acid), PLA, is a biodegradable polymer obtained from renewable sources with similar properties when compared with petroleum-based thermoplastics but with inherent brittleness. In this work, the use of thermoplastic polyurethane (TPU) as toughening agent was evaluated. PLA/TPU blends with 25 and 50 wt% of TPU were produced in an internal mixer without the use of compatibilizers. Their thermal, rheological, and mechanical properties were analyzed and correlated with the developed morphology. Immiscible blends with dispersed droplets morphology were obtained, and it was observed an inversion between the matrix and dispersed phases with the increase of the TPU content. The presence of TPU altered the elasticity and viscosity of the blends when compared to PLA, besides acting as a nucleating agent. Huge increments in impact resistance (up to 365%) were achieved, indicating a great potential of TPU to be used as a PLA toughening agent.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 193
Author(s):  
Carla I. Martins ◽  
Vitória Gil ◽  
Sara Rocha

This research addresses the importance of pine wood sawdust granulometry on the processing of medium-density polyethylene (MDPE)/wood composites by rotational molding and its effects on the morphological, mechanical and aesthetical properties of parts, aiming to contribute for the development of sustainable wood polymer composites (WPC) for rotational molding applications. Pine wood sawdust was sieved (<150, 150, 300, 500, 710, >1000 µm) and analyzed for its physical, morphological and thermal characteristics. Rotational molded parts were produced with matrix/wood ratios from 90/10 to 70/30 wt% considering different wood granulometries. As a natural material, wood changed its color during processing. Granulometries below 500 µm presented better sintering, homogeneity and less part defects. Furthermore, 300–500 µm favored the impact resistance (1316 N), as irregular brick-shaped wood was able to anchor to PE despite the weak interfacial adhesion observed. The increase of wood content from 10 to 30% reduced the impact properties by 40%, as a result of a highly porous structure formed, revealing sintering difficulties during processing. WPC parts of differentiated aesthetics and functionalities were achieved by rotational molding. A clear relationship between wood granulometry and WPC processing, structure and properties was identified.


Sign in / Sign up

Export Citation Format

Share Document