scholarly journals Proposal of a Decoupled Structure of Fuzzy-PID Controllers Applied to the Position Control in a Planar CDPR

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 745
Author(s):  
Marco Carpio ◽  
Roque Saltaren ◽  
Julio Viola ◽  
Cristian Calderon ◽  
Juan Guerra

The design of robot systems controlled by cables can be relatively difficult when it is approached from the mathematical model of the mechanism, considering that its approach involves non-linearities associated with different components, such as cables and pulleys. In this work, a simple and practical decoupled control structure proposal that requires practically no mathematical analysis was developed for the position control of a planar cable-driven parallel robot (CDPR). This structure was implemented using non-linear fuzzy PID and classic PID controllers, allowing performance comparisons to be established. For the development of this research, first the structure of the control system was proposed, based on an analysis of the cables involved in the movement of the end-effector (EE) of the robot when they act independently for each axis. Then a tuning of rules was carried out for fuzzy PID controllers, and Ziegler–Nichols tuning was applied to classic PID controllers. Finally, simulations were performed in MATLAB with the Simulink and Simscape tools. The results obtained allowed us to observe the effectiveness of the proposed structure, with noticeably better performance obtained from the fuzzy PID controllers.

Robotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 111
Author(s):  
Marco Carpio ◽  
Roque Saltaren ◽  
Julio Viola ◽  
Cecilia García ◽  
Juan Guerra ◽  
...  

Currently, a large number of investigations are being carried out in the area of robotics focused on proposing solutions in the field of health, and many of them have directed their efforts on issues related to the health emergency due to COVID-19. Considering that one of the ways to reduce the risk of contagion is by avoiding contact and closeness between people when exchanging supplies such as food, medicine, clothing, etc., this work proposes the use of a planar cable-driven parallel robot for the transport of supplies in hospitals whose room distribution has planar architecture. The robot acts in accordance with a procedure proposed for each task to be carried out, which includes the process of disinfection (based on Ultraviolet-C light) of the supplies transported inside the robot’s end effector. The study presents a design proposal for the geometry of the planar cable-driven parallel robots and its end effector, as well as the software simulations that allow evaluating the robot’s movement trajectories and the responses of the position control system based on Fuzzy-PID controllers.


Author(s):  
Ljubinko B Kevac ◽  
Mirjana M Filipovic ◽  
Ana M Djuric

Characteristic construction of cable-suspended parallel robot of artificial muscle, which presents an artificial forearm, is analyzed and synthesized. Novel results were achieved and presented. Results presented in this paper were initially driven to recognize and mathematically define undefined geometric relations of the artificial forearm since it was found that they strongly affect the dynamic response of this system. It gets more complicated when one has more complex system, which uses more artificial muscle subsystems, since these subsystems couple and system becomes more unstable. Unmodeled or insufficiently modeled dynamics can strongly affect the system’s instability. Because of that, the construction of this system and its new mathematical model are defined and presented in this paper. Generally, it can be said that the analysis of geometry of selected mechanism is the first step and very important step to establish the structural stability of these systems. This system is driven with two actuators, which need to work in a coordinated fashion. The aim of this paper is to show the importance of the geometry of this solution, which then strongly affects the system’s kinematics and dynamics. To determine the complexity of this system, it was presumed that system has rigid cables. Idea is to show the importance of good defined geometry of the system, which gives good basis for the definition of mathematical model of the system. Novel program package AMCO, artificial muscle contribution, was defined for the validation of the mathematical model of the system and for choice of its parameters. Sensitivity of the system to certain parameters is very high and hence analysis of this system needs to be done with a lot of caution. Some parameters are very influential on the possible implementation of the given task of the system. Only after choosing the parameters and checking the system through certain simulation results, control structure can be defined. In this paper, proportional–derivative controller was chosen.


2011 ◽  
Vol 138-139 ◽  
pp. 68-73 ◽  
Author(s):  
Ke Yi Wang ◽  
Fang Chao Ma ◽  
Meng Hao ◽  
Li Xun Zhang ◽  
Pan Liu

During rehabilitative training, a 3-DOF wire-driven parallel robot driven was designed to coordinate and control the trainer pelvis movement. Based on the force balance equation of the end-effector, the stiffness problem about the robot system was analyzed and one kind of force/position parallel control strategy was proposed that the position loop would realize the end-effector motion trajectory, and the force loop would control the wire tension. The experimental results have shown that the robot systematic stiffness is related with the wire tension and can be changed to realize the compliance control of the robot system by adjusting the wire tension.


2012 ◽  
Vol 220-223 ◽  
pp. 157-160
Author(s):  
Jing Qing Ma ◽  
Hai Bo Chen

The HAPC(Hydraulic Automatic Position Control) requires quick dynamic response and high control accuracy. Based on the research of the HAPC system, I build the HAPC mathematical model, then design both the Conventional PID controller and fuzzy PID controllers, simulate the two control methods using the MATLAB software, analyze the main factors which influence the results. The simulation results show that the fuzzy PID controller has the better effect in the dynamic response and the control accuracy than the former.


Author(s):  
Mohsen Heydarzadeh ◽  
Nima Karbasizadeh ◽  
Mehdi Tale Masouleh ◽  
Ahmad Kalhor

This paper aims at using a kinematic identification procedure in order to enhance the control of a 3-DOF fully decoupled parallel robot, the so-called “Tripteron.” From a practical standpoint, manufacture errors lead to some kinematic uncertainties in the robot which cause real kinematic equations of the robot to be different from the theoretical ones. In this paper, using a white box identification procedure, the independence of degrees-of-freedom in the robot is studied. Considering the fact that the kinematic identification of a robotic manipulator requires the position of its end-effector to be known, in this paper “Kinect” sensor, which is a vision-infra red sensor, is utilized to obtain the spatial coordinates of the end-effector. In order to calibrate the Kinect, a novel approach which is based on a neuro-fuzzy algorithm, the so-called “LoLiMoT” algorithm, is used. Moreover, the results of experimentally performing the identification and calibrating approach are used to the end of implementing a closed-loop classic controller for path tracking purposes. Furthermore, the theoretical unidentified model was implemented in a sliding mode robust controller in order to compare the results with classic controller. The comparison reveals that classic controller which uses identified model leads to a better performance in terms of accuracy and control effort with respect to robust controller which is purely based on theoretical model.


Sign in / Sign up

Export Citation Format

Share Document