scholarly journals Application of Transfer Learning for Object Recognition Using Convolutional Neural Networks

Author(s):  
Nicolas Diaz Salazar ◽  
Jesus Alfonso Lopez Sotelo ◽  
Gustavo Andres Salazar Gomez

The global development and progress in scientific paraphernalia and technology is the fundamental reason for the rapid increasein the data volume. Several significant techniques have been introducedfor image processing and object detection owing to this advancement. The promising features and transfer learning of ConvolutionalNeural Network (CNN) havegained much attention around the globe by researchers as well as computer vision society, as a result of which, several remarkable breakthroughs were achieved. This paper comprehensively reviews the data classification, history as well as architecture of CNN and well-known techniques bytheir boons and absurdities. Finally, a discussion for implementation of CNN over object detection for effectual results based on their critical analysis and performances is presented


2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Gustaf Halvardsson ◽  
Johanna Peterson ◽  
César Soto-Valero ◽  
Benoit Baudry

AbstractThe automatic interpretation of sign languages is a challenging task, as it requires the usage of high-level vision and high-level motion processing systems for providing accurate image perception. In this paper, we use Convolutional Neural Networks (CNNs) and transfer learning to make computers able to interpret signs of the Swedish Sign Language (SSL) hand alphabet. Our model consists of the implementation of a pre-trained InceptionV3 network, and the usage of the mini-batch gradient descent optimization algorithm. We rely on transfer learning during the pre-training of the model and its data. The final accuracy of the model, based on 8 study subjects and 9400 images, is 85%. Our results indicate that the usage of CNNs is a promising approach to interpret sign languages, and transfer learning can be used to achieve high testing accuracy despite using a small training dataset. Furthermore, we describe the implementation details of our model to interpret signs as a user-friendly web application.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110105
Author(s):  
Jnana Sai Abhishek Varma Gokaraju ◽  
Weon Keun Song ◽  
Min-Ho Ka ◽  
Somyot Kaitwanidvilai

The study investigated object detection and classification based on both Doppler radar spectrograms and vision images using two deep convolutional neural networks. The kinematic models for a walking human and a bird flapping its wings were incorporated into MATLAB simulations to create data sets. The dynamic simulator identified the final position of each ellipsoidal body segment taking its rotational motion into consideration in addition to its bulk motion at each sampling point to describe its specific motion naturally. The total motion induced a micro-Doppler effect and created a micro-Doppler signature that varied in response to changes in the input parameters, such as varying body segment size, velocity, and radar location. Micro-Doppler signature identification of the radar signals returned from the target objects that were animated by the simulator required kinematic modeling based on a short-time Fourier transform analysis of the signals. Both You Only Look Once V3 and Inception V3 were used for the detection and classification of the objects with different red, green, blue colors on black or white backgrounds. The results suggested that clear micro-Doppler signature image-based object recognition could be achieved in low-visibility conditions. This feasibility study demonstrated the application possibility of Doppler radar to autonomous vehicle driving as a backup sensor for cameras in darkness. In this study, the first successful attempt of animated kinematic models and their synchronized radar spectrograms to object recognition was made.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 43110-43136 ◽  
Author(s):  
Mingliang Gao ◽  
Jun Jiang ◽  
Guofeng Zou ◽  
Vijay John ◽  
Zheng Liu

Sign in / Sign up

Export Citation Format

Share Document