Improved Glaucoma Diagnosis Using Deep Learning

Author(s):  
Saumya Borwankar ◽  
Raima Sen ◽  
Bhavin Kakani
2020 ◽  
Vol 24 (5) ◽  
pp. 1405-1412 ◽  
Author(s):  
WangMin Liao ◽  
BeiJi Zou ◽  
RongChang Zhao ◽  
YuanQiong Chen ◽  
ZhiYou He ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yongli Xu ◽  
Man Hu ◽  
Hanruo Liu ◽  
Hao Yang ◽  
Huaizhou Wang ◽  
...  

AbstractThe application of deep learning algorithms for medical diagnosis in the real world faces challenges with transparency and interpretability. The labeling of large-scale samples leads to costly investment in developing deep learning algorithms. The application of human prior knowledge is an effective way to solve these problems. Previously, we developed a deep learning system for glaucoma diagnosis based on a large number of samples that had high sensitivity and specificity. However, it is a black box and the specific analytic methods cannot be elucidated. Here, we establish a hierarchical deep learning system based on a small number of samples that comprehensively simulates the diagnostic thinking of human experts. This system can extract the anatomical characteristics of the fundus images, including the optic disc, optic cup, and appearance of the retinal nerve fiber layer to realize automatic diagnosis of glaucoma. In addition, this system is transparent and interpretable, and the intermediate process of prediction can be visualized. Applying this system to three validation datasets of fundus images, we demonstrate performance comparable to that of human experts in diagnosing glaucoma. Moreover, it markedly improves the diagnostic accuracy of ophthalmologists. This system may expedite the screening and diagnosis of glaucoma, resulting in improved clinical outcomes.


Author(s):  
Partha Sarathi Mangipudi ◽  
Hari Mohan Pandey ◽  
Ankur Choudhary

AbstractGlaucoma is an ailment causing permanent vision loss but can be prevented through the early detection. Optic disc to cup ratio is one of the key factors for glaucoma diagnosis. But accurate segmentation of disc and cup is still a challenge. To mitigate this challenge, an effective system for optic disc and cup segmentation using deep learning architecture is presented in this paper. Modified Groundtruth is utilized to train the proposed model. It works as fused segmentation marking by multiple experts that helps in improving the performance of the system. Extensive computer simulations are conducted to test the efficiency of the proposed system. For the implementation three standard benchmark datasets such as DRISHTI-GS, DRIONS-DB and RIM-ONE v3 are used. The performance of the proposed system is validated against the state-of-the-art methods. Results indicate an average overlapping score of 96.62%, 96.15% and 98.42% respectively for optic disc segmentation and an average overlapping score of 94.41% is achieved on DRISHTI-GS which is significant for optic cup segmentation.


Sign in / Sign up

Export Citation Format

Share Document