scholarly journals Improved optic disc and cup segmentation in Glaucomatic images using deep learning architecture

Author(s):  
Partha Sarathi Mangipudi ◽  
Hari Mohan Pandey ◽  
Ankur Choudhary

AbstractGlaucoma is an ailment causing permanent vision loss but can be prevented through the early detection. Optic disc to cup ratio is one of the key factors for glaucoma diagnosis. But accurate segmentation of disc and cup is still a challenge. To mitigate this challenge, an effective system for optic disc and cup segmentation using deep learning architecture is presented in this paper. Modified Groundtruth is utilized to train the proposed model. It works as fused segmentation marking by multiple experts that helps in improving the performance of the system. Extensive computer simulations are conducted to test the efficiency of the proposed system. For the implementation three standard benchmark datasets such as DRISHTI-GS, DRIONS-DB and RIM-ONE v3 are used. The performance of the proposed system is validated against the state-of-the-art methods. Results indicate an average overlapping score of 96.62%, 96.15% and 98.42% respectively for optic disc segmentation and an average overlapping score of 94.41% is achieved on DRISHTI-GS which is significant for optic cup segmentation.

2020 ◽  
Author(s):  
Bingyan Liu ◽  
Daru Pan ◽  
Hui Song

Abstract Background: Glaucoma is an eye disease that causes vision loss and even blindness. The cup to disc ratio (CDR) is an important indicator for glaucoma screening and diagnosis. Accurate segmentation for the optic disc and cup helps obtain CDR. Although many deep learning-based methods have been proposed to segment the disc and cup for fundus image, achieving highly accurate segmentation performance is still a great challenge due to the heavy overlap between the optic disc and cup.Methods: In this paper, we propose a two-stage method where the optic disc is firstly located and then the optic disc and cup are segmented jointly according to the interesting areas. Also, we consider the joint optic disc and cup segmentation task as a multi-category semantic segmentation task for which a deep learning-based model named DDSC-Net (densely connected depthwise separable convolution network) is proposed. Specifically, we employ depthwise separable convolutional layer and image pyramid input to form a deeper and wider networkto improve segmentation performance. Finally, we evaluate our method on two publicly available datasets, Drishti-GS and REFUGE dataset.Results: The experiment results show that the proposed method outperforms state-of-the-art methods, such as pOSAL, GL-Net, M-Net and Stack-U-Net in terms of disc coefficients, with the scores of 0.9780 (optic disc) and 0.9123 (optic cup) on the DRISHTI-GS dataset, and the scores of 0.9601 (optic disc) and 0.8903 (optic cup) on the REFUGE dataset. Particularly, in the more challenging optic cup segmentation task, our method outperforms GL-Net by 0.7 % in terms of disc coefficients on the Drishti-GS dataset and outperforms pOSAL by 0.79 %on the REFUGE dataset, respectively.Conclusions: The promising segmentation performances reveal that our method has the potential in assisting the screening and diagnosis of glaucoma.


Author(s):  
Tham Vo

Recently, advanced techniques in deep learning such as recurrent neural network (GRU, LSTM and Bi-LSTM) and auto-encoding (attention-based transformer and BERT) have achieved great successes in multiple application domains including text summarization. Recent state-of-the-art encoding-based text summarization models such as BertSum, PreSum and DiscoBert have demonstrated significant improvements on extractive text summarization tasks. However, recent models still encounter common problems related to the language-specific dependency which requires the supports of the external NLP tools. Besides that, recent advanced text representation methods, such as BERT as the sentence-level textual encoder, also fail to fully capture the representation of a full-length document. To address these challenges, in this paper we proposed a novel s emantic-ware e mbedding approach for ex tractive text sum marization , called as: SE4ExSum. Our proposed SE4ExSum is an integration between the use of feature graph-of-words (FGOW) with BERT-based encoder for effectively learning the word/sentence-level representations of a given document. Then, the g raph c onvolutional n etwork (GCN) based encoder is applied to learn the global document's representation which is then used to facilitate the text summarization task. Extensive experiments on benchmark datasets show the effectiveness of our proposed model in comparing with recent state-of-the-art text summarization models.


2019 ◽  
Vol 9 (22) ◽  
pp. 4963 ◽  
Author(s):  
Samee Ullah Khan ◽  
Ijaz Ul Haq ◽  
Seungmin Rho ◽  
Sung Wook Baik ◽  
Mi Young Lee

Movies have become one of the major sources of entertainment in the current era, which are based on diverse ideas. Action movies have received the most attention in last few years, which contain violent scenes, because it is one of the undesirable features for some individuals that is used to create charm and fantasy. However, these violent scenes have had a negative impact on kids, and they are not comfortable even for mature age people. The best way to stop under aged people from watching violent scenes in movies is to eliminate these scenes. In this paper, we proposed a violence detection scheme for movies that is comprised of three steps. First, the entire movie is segmented into shots, and then a representative frame from each shot is selected based on the level of saliency. Next, these selected frames are passed from a light-weight deep learning model, which is fine-tuned using a transfer learning approach to classify violence and non-violence shots in a movie. Finally, all the non-violence scenes are merged in a sequence to generate a violence-free movie that can be watched by children and as well violence paranoid people. The proposed model is evaluated on three violence benchmark datasets, and it is experimentally proved that the proposed scheme provides a fast and accurate detection of violent scenes in movies compared to the state-of-the-art methods.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xi Xu ◽  
Yu Guan ◽  
Jianqiang Li ◽  
Zerui Ma ◽  
Li Zhang ◽  
...  

Abstract Background Glaucoma is one of the causes that leads to irreversible vision loss. Automatic glaucoma detection based on fundus images has been widely studied in recent years. However, existing methods mainly depend on a considerable amount of labeled data to train the model, which is a serious constraint for real-world glaucoma detection. Methods In this paper, we introduce a transfer learning technique that leverages the fundus feature learned from similar ophthalmic data to facilitate diagnosing glaucoma. Specifically, a Transfer Induced Attention Network (TIA-Net) for automatic glaucoma detection is proposed, which extracts the discriminative features that fully characterize the glaucoma-related deep patterns under limited supervision. By integrating the channel-wise attention and maximum mean discrepancy, our proposed method can achieve a smooth transition between general and specific features, thus enhancing the feature transferability. Results To delimit the boundary between general and specific features precisely, we first investigate how many layers should be transferred during training with the source dataset network. Next, we compare our proposed model to previously mentioned methods and analyze their performance. Finally, with the advantages of the model design, we provide a transparent and interpretable transferring visualization by highlighting the key specific features in each fundus image. We evaluate the effectiveness of TIA-Net on two real clinical datasets and achieve an accuracy of 85.7%/76.6%, sensitivity of 84.9%/75.3%, specificity of 86.9%/77.2%, and AUC of 0.929 and 0.835, far better than other state-of-the-art methods. Conclusion Different from previous studies applied classic CNN models to transfer features from the non-medical dataset, we leverage knowledge from the similar ophthalmic dataset and propose an attention-based deep transfer learning model for the glaucoma diagnosis task. Extensive experiments on two real clinical datasets show that our TIA-Net outperforms other state-of-the-art methods, and meanwhile, it has certain medical value and significance for the early diagnosis of other medical tasks.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bingyan Liu ◽  
Daru Pan ◽  
Hui Song

Abstract Background Glaucoma is an eye disease that causes vision loss and even blindness. The cup to disc ratio (CDR) is an important indicator for glaucoma screening and diagnosis. Accurate segmentation for the optic disc and cup helps obtain CDR. Although many deep learning-based methods have been proposed to segment the disc and cup for fundus image, achieving highly accurate segmentation performance is still a great challenge due to the heavy overlap between the optic disc and cup. Methods In this paper, we propose a two-stage method where the optic disc is firstly located and then the optic disc and cup are segmented jointly according to the interesting areas. Also, we consider the joint optic disc and cup segmentation task as a multi-category semantic segmentation task for which a deep learning-based model named DDSC-Net (densely connected depthwise separable convolution network) is proposed. Specifically, we employ depthwise separable convolutional layer and image pyramid input to form a deeper and wider network to improve segmentation performance. Finally, we evaluate our method on two publicly available datasets, Drishti-GS and REFUGE dataset. Results The experiment results show that the proposed method outperforms state-of-the-art methods, such as pOSAL, GL-Net, M-Net and Stack-U-Net in terms of disc coefficients, with the scores of 0.9780 (optic disc) and 0.9123 (optic cup) on the DRISHTI-GS dataset, and the scores of 0.9601 (optic disc) and 0.8903 (optic cup) on the REFUGE dataset. Particularly, in the more challenging optic cup segmentation task, our method outperforms GL-Net by 0.7$$\%$$ % in terms of disc coefficients on the Drishti-GS dataset and outperforms pOSAL by 0.79$$\%$$ % on the REFUGE dataset, respectively. Conclusions The promising segmentation performances reveal that our method has the potential in assisting the screening and diagnosis of glaucoma.


2020 ◽  
Author(s):  
Bingyan Liu ◽  
Daru Pan ◽  
Hui Song

Abstract Background: Glaucoma is an eye disease that causes vision loss and even blindness. The cup to disc ratio (CDR) is an important indicator for glaucoma screening and diagnosis. Accurate segmentation for the optic disc and cup helps obtain CDR. Although many deep learning-based methods have been proposed to segment the disc and cup for fundus image, achieving highly accurate segmentation performance is still a great challenge due to the heavy overlap between the optic disc and cup. Methods: In this paper, we propose a two-stage method where the optic disc is firstly located and then the optic disc and cup are segmented jointly according to the interesting areas. Also, we consider the joint optic disc and cup segmentation task as a multi-category semantic segmentation task for which a deep learning-based model named DDSC-Net (densely connected depthwise separable convolution network) is proposed. Specifically, we employ depthwise separable convolutional layer and image pyramid input to form a deeper and wider network to improve segmentation performance. Finally, we evaluate our method on two publicly available datasets, Drishti-GS and REFUGE dataset. Results: The experiment results show that the proposed method outperforms state-of-the-art methods, such as pOSAL, GL-Net, M-Net and Stack-U-Net in terms of disc coefficients, with the scores of 0.9780 (optic disc) and 0.9123 (optic cup) on the DRISHTI-GS dataset, and the scores of 0.9601 (optic disc) and 0.8903 (optic cup) on the REFUGE dataset. Particularly, in the more challenging optic cup segmentation task, our method outperforms GL-Net by 0.7 % in terms of disc coefficients on the Drishti-GS dataset and outperforms pOSAL by 0.79 % on the REFUGE dataset, respectively. Conclusions: The promising segmentation performances reveal that our method has the potential in assisting the screening and diagnosis of glaucoma.


2021 ◽  
Vol 54 (1) ◽  
pp. 1-39
Author(s):  
Zara Nasar ◽  
Syed Waqar Jaffry ◽  
Muhammad Kamran Malik

With the advent of Web 2.0, there exist many online platforms that result in massive textual-data production. With ever-increasing textual data at hand, it is of immense importance to extract information nuggets from this data. One approach towards effective harnessing of this unstructured textual data could be its transformation into structured text. Hence, this study aims to present an overview of approaches that can be applied to extract key insights from textual data in a structured way. For this, Named Entity Recognition and Relation Extraction are being majorly addressed in this review study. The former deals with identification of named entities, and the latter deals with problem of extracting relation between set of entities. This study covers early approaches as well as the developments made up till now using machine learning models. Survey findings conclude that deep-learning-based hybrid and joint models are currently governing the state-of-the-art. It is also observed that annotated benchmark datasets for various textual-data generators such as Twitter and other social forums are not available. This scarcity of dataset has resulted into relatively less progress in these domains. Additionally, the majority of the state-of-the-art techniques are offline and computationally expensive. Last, with increasing focus on deep-learning frameworks, there is need to understand and explain the under-going processes in deep architectures.


2020 ◽  
Vol 34 (05) ◽  
pp. 7797-7804
Author(s):  
Goran Glavašš ◽  
Swapna Somasundaran

Breaking down the structure of long texts into semantically coherent segments makes the texts more readable and supports downstream applications like summarization and retrieval. Starting from an apparent link between text coherence and segmentation, we introduce a novel supervised model for text segmentation with simple but explicit coherence modeling. Our model – a neural architecture consisting of two hierarchically connected Transformer networks – is a multi-task learning model that couples the sentence-level segmentation objective with the coherence objective that differentiates correct sequences of sentences from corrupt ones. The proposed model, dubbed Coherence-Aware Text Segmentation (CATS), yields state-of-the-art segmentation performance on a collection of benchmark datasets. Furthermore, by coupling CATS with cross-lingual word embeddings, we demonstrate its effectiveness in zero-shot language transfer: it can successfully segment texts in languages unseen in training.


Author(s):  
Kexin Huang ◽  
Tianfan Fu ◽  
Lucas M Glass ◽  
Marinka Zitnik ◽  
Cao Xiao ◽  
...  

Abstract Summary Accurate prediction of drug–target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI prediction. However, these models can be difficult to use for both computer scientists entering the biomedical field and bioinformaticians with limited DL experience. We present DeepPurpose, a comprehensive and easy-to-use DL library for DTI prediction. DeepPurpose supports training of customized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architectures, along with providing many other useful features. We demonstrate state-of-the-art performance of DeepPurpose on several benchmark datasets. Availability and implementation https://github.com/kexinhuang12345/DeepPurpose. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 34 (07) ◽  
pp. 11890-11898
Author(s):  
Zhongang Qi ◽  
Saeed Khorram ◽  
Li Fuxin

Understanding and interpreting the decisions made by deep learning models is valuable in many domains. In computer vision, computing heatmaps from a deep network is a popular approach for visualizing and understanding deep networks. However, heatmaps that do not correlate with the network may mislead human, hence the performance of heatmaps in providing a faithful explanation to the underlying deep network is crucial. In this paper, we propose I-GOS, which optimizes for a heatmap so that the classification scores on the masked image would maximally decrease. The main novelty of the approach is to compute descent directions based on the integrated gradients instead of the normal gradient, which avoids local optima and speeds up convergence. Compared with previous approaches, our method can flexibly compute heatmaps at any resolution for different user needs. Extensive experiments on several benchmark datasets show that the heatmaps produced by our approach are more correlated with the decision of the underlying deep network, in comparison with other state-of-the-art approaches.


Sign in / Sign up

Export Citation Format

Share Document