System of data acquisition applied to a level control using fuzzy logic

Author(s):  
Alvaro Correa ◽  
Adviser Mario Chauca
2015 ◽  
Vol 7 (3) ◽  
pp. 317-322
Author(s):  
Dominykas Beištaras

This paper presents liquid level control system model and analysis of dynamic characteristics. The system consists of scalar controlled induction motor drive, fuzzy logic controller, water tank and centrifugal pump. Simulink models of water tank, pump and controller are presented. The simulation of the system shows that the use of fuzzy logic controller reduces valve opening time and reservoir filling time. Nagrinėjamas skysčio lygio valdymo sistemos imitacinių modelių sudarymas, analizuojamos dinaminės charakteristikos. Valdymo sistema sudaryta iš skaliariniu būdu valdomos dažninės elektros pavaros su neraiškiosios logikos reguliatoriumi, vandens rezervuaro ir išcentrinio siurblio. Sudaryti rezervuaro, siurblio ir reguliatoriaus Simulink modeliai. Atlikus imitacijas gauta nedimensinė siurblio charakteristika, apibūdinanti siurblio veikimą, esant bet kokiam sukimosi greičiui. Nustatyta, kad sistemoje su neraiškiosios logikos reguliatoriumi vožtuvas yra atidaromas greičiau nei sistemoje su proporcinguoju integraliniu (PI) reguliatoriumi, ir todėl sumažinama rezervuaro pripildymo trukmė.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 20
Author(s):  
Christopher T Noto ◽  
Suleman Mazhar ◽  
James Gnadt ◽  
Jagmeet S Kanwal

A major problem facing behavioral neuroscientists is a lack of unified, vendor-distributed data acquisition systems that allow stimulus presentation and behavioral monitoring while recording neural activity. Numerous systems perform one of these tasks well independently, but to our knowledge, a useful package with a straightforward user interface does not exist. Here we describe the development of a flexible, script-based user interface that enables customization for real-time stimulus presentation, behavioral monitoring and data acquisition. The experimental design can also incorporate neural microstimulation paradigms. We used this interface to deliver multimodal, auditory and visual (images or video) stimuli to a nonhuman primate and acquire single-unit data. Our design is cost-effective and works well with commercially available hardware and software. Our design incorporates a script, providing high-level control of data acquisition via a sequencer running on a digital signal processor to enable behaviorally triggered control of the presentation of visual and auditory stimuli. Our experiments were conducted in combination with eye-tracking hardware. The script, however, is designed to be broadly useful to neuroscientists who may want to deliver stimuli of different modalities using any animal model.


Author(s):  
Dileep R. Sule ◽  
Tory K. Watkins ◽  
David Restifo

Abstract The aim of this paper is to introduce an expansion of the practice of using surveys when making subjective judgments or decisions. This method is particularly useful in situations in which precise data is limited or nonexistent. It can be especially valuable when working with new designs by reducing the error associated with estimates in the beginning of the product’s life cycle in which costs are greatest. Our approach modifies the traditional survey style by including fuzzy logic and expert judgment. Using fuzzy logic, we solicit the information in a way that gives the evaluator a continuous choice for the cost estimate and a method to indicate the level of confidence in a linguistic manner. By doing this, a range of the likely values for the real value can be defined, and a subjective judgment can be turned into objective information that can be more useful than the traditional approach.


Sign in / Sign up

Export Citation Format

Share Document