Towards an electric power standard for frequencies up to 1 MHz

Author(s):  
Valter Tarasso ◽  
Tobias Bergsten ◽  
Karl-Erik Rydler
2019 ◽  
pp. 471-478
Author(s):  
Ewgen Danilin ◽  
Alexander Lobov

Kotloenergoprom Stock Co. has developed new technology of thermal rendering harmless andwaste recovering of heat of flue gases from coke-oven batteries in one unit.In 2000, Kotloenergoprom Stock Co. had executed the design of the first in the world Unit ofthermal rendering harmless and waste recovering of heat of flue gases from the coke-oven batteryNo. l installed in "Zaporozhkoks" (65 furnaces, H = 7.0 m, V = 41.6 m3).The complex "Coke-oven battery - Unit" operates in the special mode using automatic processcontrol system. Introduction the above Unit in 2002 had ensured: decrease of NOx contents influe gases from coke-oven battery in 1.5+2 times and CO on 90+ I 00 % with providinginternational norms of ejections; rebuming solid carbon inclusions and combustible components(H2, CH4, CmHn) in flue gases; stabilization of hydraulic mode of coke-oven battery operation;non-shock putting coke-oven battery into operation directly to chimney stack in case of scheduledor accident stopping the Unit; waste recovery of heat of flue gases from coke-oven battery inquantity up to 6.0 Gkal/h; producing up to 85 tph of steam with energetic parameters at additionalcombustion of coke-oven gas (without building new chimney stack), that lets to produceadditionally 6 MWt of electric power;Standard scheme of producing heat and electric power at by-product coke plants applying usualboiler houses and power stations is irrational. The more effective is to apply the scheme ofproducing heat and electric power with simultaneous rendering harmless and waste recovery ofheat of flue gases from coke-oven batteries in the special Units using existing chimney stacks ofcoke-oven batteries.Cost of building the Unit is not more than cost of usual boiler house or power station with equalcapacity.


2012 ◽  
Vol 220-223 ◽  
pp. 1507-1513
Author(s):  
Guo Ying Lin ◽  
Shang Li Zhou ◽  
Wei Ming Sun

Recently, China is developing smart grid with great strength, more and more digital substations will be built, therefore, it is time for thinking of the accuracy of the new electric energy metering devices. But the new electric energy metering devices are different from the traditional meters by using Digi-Data interface instead of voltage and current interface, requiring a new method of testing error. By equivalently transforming electric power from analog to digital, we design a special electric power standard with digital-data-interface according to IEC61850. Based on the special electric power standard, this article introduces a new method for calibrating digi-data input power meter.


1912 ◽  
Vol 107 (15) ◽  
pp. 299-300
Author(s):  
Putnam A. Bates
Keyword(s):  

1906 ◽  
Vol 62 (1608supp) ◽  
pp. 25758-25758
Author(s):  
Alfred Gradenwitz

1993 ◽  
Vol 140 (6) ◽  
pp. 485 ◽  
Author(s):  
J.-C. Montaño ◽  
A. López ◽  
M. Castilla ◽  
J. Gutierrez

Author(s):  
Molla Asmare ◽  
Mustafa Ilbas

Nowadays, the most decisive challenges we are fronting are perfectly clean energy making for equitable and sustainable modern energy access, and battling the emerging alteration of the climate. This is because, carbon-rich fuels are the fundamental supply of utilized energy for strengthening human society, and it will be sustained in the near future. In connection with this, electrochemical technologies are an emerging and domineering tool for efficiently transforming the existing scarce fossil fuels and renewable energy sources into electric power with a trivial environmental impact. Compared with conventional power generation technologies, SOFC that operate at high temperature is emerging as a frontrunner to convert the fuels chemical energy into electric power and permits the deployment of varieties of fuels with negligible ecological destructions. According to this critical review, direct ammonia is obtained as a primary possible choice and price-effective green fuel for T-SOFCs. This is because T-SOFCs have higher volumetric power density, mechanically stable, and high thermal shocking resistance. Also, there is no sealing issue problem which is the chronic issues of the planar one. As a result, the toxicity of ammonia to use as a fuel is minimized if there may be a leakage during operation. It is portable and manageable that can be work everywhere when there is energy demand. Besides, manufacturing, onboard hydrogen deposition, and transportation infrastructure connected snags of hydrogen will be solved using ammonia. Ammonia is a low-priced carbon-neutral source of energy and has more stored volumetric energy compared with hydrogen. Yet, to utilize direct NH3 as a means of hydrogen carrier and an alternative green fuel in T-SOFCs practically determining the optimum operating temperatures, reactant flow rates, electrode porosities, pressure, the position of the anode, thickness and diameters of the tube are still requiring further improvement. Therefore, mathematical modeling ought to be developed to determine these parameters before planning for experimental work. Also, a performance comparison of AS, ES, and CS- T-SOFC powered with direct NH3 will be investigated and best-performed support will be carefully chosen for practical implementation and an experimental study will be conducted for verification based on optimum parameter values obtained from numerical modeling.


Sign in / Sign up

Export Citation Format

Share Document