green fuel
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 70)

H-INDEX

22
(FIVE YEARS 7)

Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 122041
Author(s):  
R.S.R.M. Hafriz ◽  
N.A. Arifin ◽  
A. Salmiaton ◽  
R. Yunus ◽  
Y.H. Taufiq-Yap ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 65-69
Author(s):  
Van Thinh Dinh

Hydrogen is considered as "the green fuel of the 21st century" and forecasted to play a leading role in the energy transition. The article introduces the processes of green hydrogen production in Energiepark Mainz, the first wind power hydrogen production plant with a capacity of 6 MW in Germany. The article describes the production, storage, transportation, and consumption (gas, fuel for bus and industries) of green hydrogen through the continuous operation of the plant. Based on that, the author analyses opportunities and challenges when applying Energiepark Mainz's model to the green hydrogen production strategy in Vietnam.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuswan Muharam ◽  
Dianursanti ◽  
Andrey Sapati Wirya

Trickle-bed reactor (TBR) modelling to produce green fuel via hydrocracking of jatropha oil using silica-alumina-supported Ni-W catalysts was performed in this research. The objectives of this study are to obtain a TBR with good heat transfer and the optimum condition for high purities of products. A two-dimensional axisymmetric model with a diameter of 0.1 m and a length of 10 m was used as a representative of the actual TBR system. Heterogeneous phenomenological models were developed considering mass, energy, and momentum transfers. The optimisation was conducted to obtain the highest green fuel purity by varying catalyst particle diameter, inlet gas velocity, feed molar ratio, and inlet temperature. The simulation shows that a TBR with an aspect ratio of 100 has achieved a good heat transfer. The diesel purity reaches 44.22% at 420°C, kerosene purity reaches 21.39% at 500°C, and naphtha purity reaches 25.30% at 500°C. The optimum condition is reached at the catalyst diameter of 1 mm, the inlet gas velocity of 1 cm/s, the feed molar ratio of 105.5, and the inlet temperature at 500°C with the green fuel purity of 69.4%.


2021 ◽  
Vol 24 ◽  
pp. 100533
Author(s):  
Enyonam Ahadzi ◽  
M.S Ramyashree ◽  
S. Shanmuga Priya ◽  
K. Sudhakar ◽  
Muhammad Tahir

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3952
Author(s):  
Firdous Ahmad Ahangar ◽  
Umer Rashid ◽  
Junaid Ahmad ◽  
Toshiki Tsubota ◽  
Ali Alsalme

In this study, a novel idea was proposed to convert the polyethylene terephthalate (PET) waste drinking-water bottles into activated carbon (AC) to use for waste cooking oil (WCO) and palm fatty acid distillate (PFAD) feasibility to convert into esters. The acidic and basic char were prepared by using the waste PET bottles. The physiochemical properties were determined by employing various analytical techniques, such as field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), Brunauer–Emmett–Teller (BET) and temperature-programmed desorption – ammonia/carbon dioxide (TPD-NH3/CO2). The prepared PET H3PO4 and PET KOH showed the higher surface area, thus illustrating that the surface of both materials has enough space for impregnation of foreign precursors. The TPD-NH3 and TPD-CO2 results depicted that PET H3PO4 is found to have higher acidity, i.e., 18.17 mmolg−1, due to the attachment of phosponyl groups to it during pretreatment, whereas, in the case of PET KOH, the basicity increases to 13.49 mmolg−1. The conversion results show that prepared materials can be used as a support for an acidic and basic catalyst for the conversion of WCO and PFAD into green fuel.


2021 ◽  
pp. 1-8
Author(s):  
Man Vir Singh ◽  
Sudesh Kumar

The interest and relevance of the present paper is in the current waste plastics valorization scenario. The rapid depletion of fossil sources carbon as crude oil and their ever-increasing costs has led to an intensive search for alternative fuels. The renewable green fuel (RGF) or alternative fuel was obtained from waste low and high-density polyethylene (LD-PE, HD-PE) or polyolefin’s and computer-body through pyrolysis process using a CdCO3 from 23 °C to 400 °C. Five types of hydrocarbons were observed through 2D GCxGC/TOFMS, such as 7.621 % paraffin’s, 53.66 % branched / cyclic hydrocarbons, 14.83 % aromatics, 0.37 % phenanthrenes, and some unclassified compounds were 27.11 %. The research octane number of RGF was 88.29. The bromine number of RGF is 34.03 %. RGF was suitable for diesel engines and diesel furnaces without any upgrading. During the first, second and third pyrolysis experiments, 98 g, 95 g and 100 g (wt %) waste granules with 2 g, 5 g and 0 g (wt %) CdCO3 into RGFs were 85 %, 89 % and 80 % collected; uncondensed gases were 14.22 %, 10.15 % and 19.52 % collected; the residue were 0.78 %, 0.85 % and 0.48 % collected.


Author(s):  
Paulo Nocera Alves Junior ◽  
Isotilia Costa Melo ◽  
Rodrigo de Moraes Santos ◽  
Fernando Vinícius da Rocha ◽  
José Vicente Caixeta-Filho

2021 ◽  
pp. 101803
Author(s):  
Settakorn Upasen ◽  
Gittaya Sarunchot ◽  
Nutcharin Srira-ngam ◽  
Yingyot Poo-arporn ◽  
Piyachat Wattanachai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document