A 60 GHz Variable Gain Amplifier with a Low Phase Imbalance in 0.18 μm SiGe BiCMOS Technology

Author(s):  
Chul Woo Byeon ◽  
In Sang Song ◽  
Seong Jun Cho ◽  
Hong Yi Kim ◽  
Chaejun Lee ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Zhengyu Sun ◽  
Yuepeng Yan

A broadband linear-in-dB variable-gain amplifier (VGA) circuit is implemented in 0.18 μm SiGe BiCMOS process. The VGA comprises two cascaded variable-gain core, in which a hybrid current-steering current gain cell is inserted in the Cherry-Hooper amplifier to maintain a broad bandwidth while covering a wide gain range. Postlayout simulation results confirm that the proposed circuit achieves a 2 GHz 3-dB bandwidth with wide linear-in-dB gain tuning range from −19 dB up to 61 dB. The amplifier offers a competitive gain bandwidth product of 2805 GHz at the maximum gain for a 110-GHz ftBiCMOS technology. The amplifier core consumes 31 mW from a 3.3 V supply and occupies active area of 280 μm by 140 μm.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Francesco Centurelli ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Pasquale Tommasino ◽  
Alessandro Trifiletti

Abstract Analysis, design, and characterization of an E-band Variable Gain Amplifier (VGA) in SiGe BiCMOS commercial technology is presented. VGA topologies are compared in terms of their capability to contribute to receiver linearity and dynamic range. The proposed VGA is based on a Gilbert multiplier cell exploiting current cancellation to enhance control range and linearity. A 1 dB bandwidth ranging from 80 to 100 GHz, a 24 dB gain control range and a −11.5 dBm input 1 dB compression point have been measured.


Sign in / Sign up

Export Citation Format

Share Document