Deep learning based velocity prediction with consideration of road structure

Author(s):  
Pengyu Fu ◽  
Liang Chu ◽  
Zhuoran Hou ◽  
Jiaming Xing ◽  
Jianbing Gao ◽  
...  
2021 ◽  
Vol 2083 (4) ◽  
pp. 042065
Author(s):  
Guojie Yang ◽  
Shuhua Wang

Abstract Aiming at the s-wave velocity prediction problem, based on the analysis of the advantages and disadvantages of the empirical formula method and the rock physics modeling method, combined with the s-wave velocity prediction principle, the deep learning method is introduced, and a deep learning-based logging s-wave velocity prediction method is proposed. This method uses a deep neural network algorithm to establish a nonlinear mapping relationship between reservoir parameters (acoustic time difference, density, neutron porosity, shale content, porosity) and s-wave velocity, and then applies it to the s-wave velocity prediction at the well point. Starting from the relationship between p-wave and s-wave velocity, the study explained the feasibility of applying deep learning technology to s-wave prediction and the principle of sample selection, and finally established a reliable s-wave prediction model. The model was applied to s-wave velocity prediction in different research areas, and the results show that the s-wave velocity prediction technology based on deep learning can effectively improve the accuracy and efficiency of s-wave velocity prediction, and has the characteristics of a wide range of applications. It can provide reliable s-wave data for pre-stack AVO analysis and pre-stack inversion, so it has high practical application value and certain promotion significance.


2020 ◽  
Author(s):  
He Pei ◽  
Jiang Ren ◽  
Zeng Qingcai ◽  
Lu MingHui ◽  
Li Linggao ◽  
...  

Author(s):  
Chien-Sheng Kuo ◽  
Woei-Kae Chen ◽  
Chien-Hung Liu ◽  
Shingchern D. You

2021 ◽  
Author(s):  
Sayahnya Roy

<p>Wind energy is widely used in renewable energy systems but the randomness and the intermittence of the wind make its accurate prediction difficult. This study develops an advanced and reliable model for multi-step wind variability prediction using long short-term memory (LSTM) network based on deep learning neural network (DLNN). A 20 Hz Ultrasonic anemometer was positioned in northern France (LOG site) to measure the random wind variability for the duration of thirty-four days. Real-time turbulence kinetic energy is computed from the measured wind velocity components, and multi-resolution features of wind velocity and turbulent kinetic energy are used as input for the prediction model. These multi-resolution features of wind variability are extracted using one-dimensional discrete wavelet transformation. The proposed DLNN is framed to implement multi-step prediction ranging from 10 min to 48 h. For velocity prediction, the root mean square error, mean absolute error and mean absolute percentage error are 0.047 m/s, 0.19 m/s, and 11.3% respectively. These error values indicate a good reliability of the proposed DLNN for predicting wind variability. We found that the present model performs well for mid-long-term (6-24h) wind velocity prediction. The model is also good for the long-term (24-48h) turbulence kinetic energy prediction.</p>


Author(s):  
Stellan Ohlsson
Keyword(s):  

2019 ◽  
Vol 53 (3) ◽  
pp. 281-294
Author(s):  
Jean-Michel Foucart ◽  
Augustin Chavanne ◽  
Jérôme Bourriau

Nombreux sont les apports envisagés de l’Intelligence Artificielle (IA) en médecine. En orthodontie, plusieurs solutions automatisées sont disponibles depuis quelques années en imagerie par rayons X (analyse céphalométrique automatisée, analyse automatisée des voies aériennes) ou depuis quelques mois (analyse automatique des modèles numériques, set-up automatisé; CS Model +, Carestream Dental™). L’objectif de cette étude, en deux parties, est d’évaluer la fiabilité de l’analyse automatisée des modèles tant au niveau de leur numérisation que de leur segmentation. La comparaison des résultats d’analyse des modèles obtenus automatiquement et par l’intermédiaire de plusieurs orthodontistes démontre la fiabilité de l’analyse automatique; l’erreur de mesure oscillant, in fine, entre 0,08 et 1,04 mm, ce qui est non significatif et comparable avec les erreurs de mesures inter-observateurs rapportées dans la littérature. Ces résultats ouvrent ainsi de nouvelles perspectives quand à l’apport de l’IA en Orthodontie qui, basée sur le deep learning et le big data, devrait permettre, à moyen terme, d’évoluer vers une orthodontie plus préventive et plus prédictive.


2020 ◽  
Author(s):  
L Pennig ◽  
L Lourenco Caldeira ◽  
C Hoyer ◽  
L Görtz ◽  
R Shahzad ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document