wave prediction
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 56)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 9 (11) ◽  
pp. 1257
Author(s):  
Chih-Chiang Wei

Nearshore wave forecasting is susceptible to changes in regional wind fields and environments. However, surface wind field changes are difficult to determine due to the lack of in situ observational data. Therefore, accurate wind and coastal wave forecasts during typhoon periods are necessary. The purpose of this study is to develop artificial intelligence (AI)-based techniques for forecasting wind–wave processes near coastal areas during typhoons. The proposed integrated models employ combined a numerical weather prediction (NWP) model and AI techniques, namely numerical (NUM)-AI-based wind–wave prediction models. This hybrid model comprising VGGNNet and High-Resolution Network (HRNet) was integrated with recurrent-based gated recurrent unit (GRU). Termed mVHR_GRU, this model was constructed using a convolutional layer for extracting features from spatial images with high-to-low resolution and a recurrent GRU model for time series prediction. To investigate the potential of mVHR_GRU for wind–wave prediction, VGGNet, HRNet, and Two-Step Wind-Wave Prediction (TSWP) were selected as benchmark models. The coastal waters in northeast Taiwan were the study area. The length of the forecast horizon was from 1 to 6 h. The mVHR_GRU model outperformed the HR_GRU, VGGNet, and TSWP models according to the error indicators. The coefficient of mVHR_GRU efficiency improved by 13% to 18% and by 13% to 15% at the Longdong and Guishandao buoys, respectively. In addition, in a comparison of the NUM–AI-based model and a numerical model simulating waves nearshore (SWAN), the SWAN model generated greater errors than the NUM–AI-based model. The results of the NUM–AI-based wind–wave prediction model were in favorable accordance with the observed results, indicating the feasibility of the established model in processing spatial data.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042065
Author(s):  
Guojie Yang ◽  
Shuhua Wang

Abstract Aiming at the s-wave velocity prediction problem, based on the analysis of the advantages and disadvantages of the empirical formula method and the rock physics modeling method, combined with the s-wave velocity prediction principle, the deep learning method is introduced, and a deep learning-based logging s-wave velocity prediction method is proposed. This method uses a deep neural network algorithm to establish a nonlinear mapping relationship between reservoir parameters (acoustic time difference, density, neutron porosity, shale content, porosity) and s-wave velocity, and then applies it to the s-wave velocity prediction at the well point. Starting from the relationship between p-wave and s-wave velocity, the study explained the feasibility of applying deep learning technology to s-wave prediction and the principle of sample selection, and finally established a reliable s-wave prediction model. The model was applied to s-wave velocity prediction in different research areas, and the results show that the s-wave velocity prediction technology based on deep learning can effectively improve the accuracy and efficiency of s-wave velocity prediction, and has the characteristics of a wide range of applications. It can provide reliable s-wave data for pre-stack AVO analysis and pre-stack inversion, so it has high practical application value and certain promotion significance.


2021 ◽  
Author(s):  
Yunsong Sun ◽  
Wenchuang Wang ◽  
Zhenbo Guo ◽  
Weifeng Geng ◽  
Jianlei Zhang

Author(s):  
Geraldo de Freitas Maciel ◽  
André Luis Toniati ◽  
Fabiana de Oliveira Ferreira ◽  
Yuri Taglieri Sáo

Sign in / Sign up

Export Citation Format

Share Document