Efficient Temporal Sequence Comparison and Classification Using Gram Matrix Embeddings on a Riemannian Manifold

Author(s):  
Xikang Zhang ◽  
Yin Wang ◽  
Mengran Gou ◽  
Mario Sznaier ◽  
Octavia Camps

1992 ◽  
Author(s):  
Lynne E. Bernstein ◽  
Marilyn E. Demorest


2019 ◽  
Vol 20 (4) ◽  
pp. 647-653
Author(s):  
Mike C. Parent ◽  
Aaron B. Rochlen ◽  
Lexie Wille
Keyword(s):  
Gay Men ◽  




1988 ◽  
Author(s):  
Nolan G. Gore ◽  
Elizabeth W. Edmiston ◽  
Joel H. Saltz ◽  
Roger M. Smith


2001 ◽  
Vol 17 (2) ◽  
pp. 120-121
Author(s):  
B Klauß-Perschke ◽  
H O Hoppen ◽  
S Schlote


Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2543-2554
Author(s):  
E. Peyghan ◽  
F. Firuzi ◽  
U.C. De

Starting from the g-natural Riemannian metric G on the tangent bundle TM of a Riemannian manifold (M,g), we construct a family of the Golden Riemannian structures ? on the tangent bundle (TM,G). Then we investigate the integrability of such Golden Riemannian structures on the tangent bundle TM and show that there is a direct correlation between the locally decomposable property of (TM,?,G) and the locally flatness of manifold (M,g).



Sign in / Sign up

Export Citation Format

Share Document