scholarly journals Towards Indirect Top-Down Road Transport Emissions Estimation

Author(s):  
Ryan Mukherjee ◽  
Derek Rollend ◽  
Gordon Christie ◽  
Armin Hadzic ◽  
Sally Matson ◽  
...  
Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1372
Author(s):  
Felipe Cifuentes ◽  
Carlos M. González ◽  
Erika M. Trejos ◽  
Luis D. López ◽  
Francisco J. Sandoval ◽  
...  

Vehicular emissions are a predominant source of pollution in urban environments. However, inherent complexities of vehicular behavior are sources of uncertainties in emission inventories (EIs). We compare bottom-up and top-down approaches for estimating road transport EIs in Manizales, Colombia. The EIs were estimated using a COPERT model, and results from both approaches were also compared with the official top-down EI (estimated from IVE methodology). The transportation model PTV-VISUM was used for obtaining specific activity information (traffic volumes, vehicular speed) in bottom-up estimation. Results from COPERT showed lower emissions from the top-down approach than from the bottom-up approach, mainly for NMVOC (−28%), PM10 (−26%), and CO (−23%). Comparisons showed that COPERT estimated lower emissions than IVE, with higher differences than 40% for species such as PM10, NOX, and CH4. Furthermore, the WRF–Chem model was used to test the sensitivity of CO, O3, PM10, and PM2.5 predictions to the different EIs evaluated. All studied pollutants exhibited a strong sensitivity to the emission factors implemented in EIs. The COPERT/top-down was the EI that produced more significant errors. This work shows the importance of performing bottom-up EI to reduce the uncertainty regarding top-down activity data.


2014 ◽  
Vol 89 ◽  
pp. 633-641 ◽  
Author(s):  
J.E. Williams ◽  
Ø. Hodnebrog ◽  
P.F.J. van Velthoven ◽  
T.K. Berntsen ◽  
O. Dessens ◽  
...  

2021 ◽  
Vol 875 (1) ◽  
pp. 012079
Author(s):  
R A Korablev ◽  
V P Belokurov ◽  
S V Belokurov

Abstract The article presents studies of the growth and development of forest stands along highways as a result of man-made impacts from road transport emissions. The obtained mathematical model describing the dynamics of the growth of the biomass of stands of various bonities of roadside stands during the period of light saturation is presented. In this regard, the obtained mathematical model describing the dynamics of the growth of the biomass of stands of various bonitets of roadside forest stands during the period of light saturation is presented. The use of the bonus in research to characterize the growth rate of forest roadside plantings depending on the distance to highways and the density of traffic flows on them allows us to characterize the amount of toxic pollutants entering forests. This allows us to assess the process of expanding the environmentally unfavorable zone along the highway. The article presents the possibility of calculating the concentration of pollutants, based on the model of turbulent diffusion, reduced, after some assumption, to the model of Gaussian distribution in atmospheric air. The dependence on the calculation of the intensity of emissions of pollutants, taking into account the composition of the traffic flow, is given.


Sign in / Sign up

Export Citation Format

Share Document