Research on the Frequency Regulation Strategy of Virtual Synchronous Generator Based Photovoltaic Power Plant

Author(s):  
Libin Yang ◽  
Jiatian Gan ◽  
Chaopeng Xia ◽  
Zhengyang Hu ◽  
Bingtuan Gao ◽  
...  
2021 ◽  
Vol 2143 (1) ◽  
pp. 012028
Author(s):  
Jiangfeng Zhang ◽  
Ye Su ◽  
Keke Zheng ◽  
Liyun Hua

Abstract With people’s attention to environmental protection, clean energy has become an important research and development direction. Among them, photovoltaic power generation has many advantages, such as simple process, no fuel consumption, no noise, no pollution and so on. The power grid capacity is becoming larger and larger, and has a great impact on the environment. Therefore, the grid connection of photovoltaic power generation will cause major problems for the planning, operation and dispatching of power grid. Virtual synchronous generator (hereinafter referred to as VSG) technology can simulate the inertia, primary frequency regulation and voltage regulation characteristics of synchronous generator, which has become an important way to improve the dynamic frequency response ability of the system. Therefore, VSG technology has become an important research technology of photovoltaic grid connected system, among which FM method will also become an important research direction. Firstly, this paper analyzes the VSG algorithm and its basic characteristics. Finally, this paper analyzes the control scheme of overall primary frequency regulation of photovoltaic power station (hereinafter referred to as PPS).


2020 ◽  
Vol 140 (6) ◽  
pp. 531-538
Author(s):  
Kotaro Nagaushi ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
Junji Tamura ◽  
Atsushi Sakahara ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 398 ◽  
Author(s):  
Jun Deng ◽  
Nan Xia ◽  
Jungang Yin ◽  
Jiliang Jin ◽  
Shutao Peng ◽  
...  

With the continuous proliferation of renewable energy generation, distributed photovoltaic inverters operating at a maximum power point reduce the inertia of power systems, degrading system frequency stability and potentially causing severe oscillations in systems after being disturbed. The virtual synchronous generator (VSG) control method, which causes photovoltaic inverters to possess inertia and damping, now plays an important role in the field of distributed generation. However, while introducing the advantages of synchronous machines, problems with oscillations are also introduced and the stochastic fluctuation characteristic of photovoltaics results in the stochastic drifting of the operating point. This paper presents an adaptive controller parameter design method for a photovoltaic-VSG (PV-VSG) integrated power system. Firstly, a small-signal model of the PV-VSG is built and a state space model is deduced. Then, the small-signal stability and low frequency oscillation characteristics of the photovoltaic power generation system are analyzed. Finally, considering the limitations of system oscillations and the stochastic drifting of the operating point, a global optimization design method for controller parameters used to improve system stability is proposed. The time domain simulation shows that an optimized PV-VSG could provide sufficient damping in the case of photovoltaic power output changes across a wider range.


Author(s):  
Haseeb Ur Rehman ◽  
Xiangwu Yan ◽  
Mohamed Abdelkarim Abdelbaky ◽  
Mishkat Ullah Jan ◽  
Sheeraz Iqbal

Sign in / Sign up

Export Citation Format

Share Document